Optical physics articles within Nature Materials

Featured

  • Article
    | Open Access

    Intense light pulses can induce symmetry breaking, as for the generation of ferroelectricity in SrTiO3. Using ultrafast X-ray diffuse scattering at a free-electron laser, nonlinear phonon interactions that occur on such mid-IR excitation are observed, with a theory for the dynamics presented.

    • M. Fechner
    • , M. Först
    •  & A. Cavalleri
  • Article |

    Propagation losses have limited the practical use of polaritons in photonic applications. Here the authors demonstrate a substantial enhancement in the propagation distance of phonon polaritons, employing synthetic optical excitation of complex frequency with virtual gain synthesized by combining multiple real frequency measurements.

    • Fuxin Guan
    • , Xiangdong Guo
    •  & Shuang Zhang
  • Article |

    The authors combine laser excitation and scanning tunnelling spectroscopy to visualize the electron and hole distributions in photoexcited moiré excitons in twisted bilayer WS2. This photocurrent tunnelling microscopy approach enables the study of photoexcited non-equilibrium moiré phenomena at atomic scales.

    • Hongyuan Li
    • , Ziyu Xiang
    •  & Feng Wang
  • Research Briefing |

    Inspired by valley pseudospins in two-dimensional materials, high-quality-factor (high-Q) spin–valley states were created through the photonic Rashba-type spin splitting of a bound state in the continuum. This approach enabled the construction of a coherent and controllable spin-optical laser using monolayer-integrated spin–valley microcavities without requiring magnetic fields or cryogenic temperatures.

  • Article |

    The authors introduce a spin-optical laser based on a monolayer transition metal dichalcogenide coupled to a heterostructure microcavity supporting high-Q spin-valley resonances originating from photonic Rashba-type spin splitting of a bound state in the continuum.

    • Kexiu Rong
    • , Xiaoyang Duan
    •  & Erez Hasman
  • Article |

    The direction of polariton canalization—its diffractionless propagation—in twisted bilayers at the magic angle is hindered by the lack of multiple magic angles. By controlling the twist angles between three α-MoO3 layers, reconfigurable and spectrally robust polariton canalization along any in-plane direction is demonstrated.

    • J. Duan
    • , G. Álvarez-Pérez
    •  & P. Alonso-González
  • News & Views |

    Current-inducing switching of magnetization is crucial for future magnetic data processing technologies, but switching it with speed and energy efficiency remains challenging. Using femtosecond optical pulses, instead of conventional charge currents, is found to make spintronics not only ultrafast but also counterintuitive.

    • Dmytro Afanasiev
    •  & Alexey V. Kimel
  • Letter
    | Open Access

    The authors report subatomic precision in measuring the displacement of a nanowire. Such precision is achieved by employing deep-learning enabled analysis of single-shot scattering of topologically structured superoscillatory illumination.

    • Tongjun Liu
    • , Cheng-Hung Chi
    •  & Nikolay I. Zheludev
  • Letter |

    Using direct laser writing with a nanosecond pulsed laser operating at above-bandgap photon energies, we demonstrate the selective formation of spin defects in photonic crystal cavities in 4H-silicon carbide and their in situ characterization.

    • Aaron M. Day
    • , Jonathan R. Dietz
    •  & Evelyn L. Hu
  • Article |

    The authors demonstrate electrical on/off switching of interlayer interactions in tungsten diselenide/molybdenum disulfide heterobilayers, the phase diagram of which contains layer-dependent correlated regions that reveal the role of strong correlations in interlayer exciton dynamics.

    • Qinghai Tan
    • , Abdullah Rasmita
    •  & Weibo Gao
  • Letter |

    Employing an oxidation-activated charge transfer strategy to oxidize transition-metal dichalcogenides into transition-metal oxides, the authors imprint plasmonic cavities with laterally abrupt doping profiles and nanoscale precision demonstrating plasmonic whispering-gallery resonators.

    • Brian S. Y. Kim
    • , Aaron J. Sternbach
    •  & D. N. Basov
  • Letter |

    We report the observation of narrowband terahertz emission from a quasi-one-dimensional charge-density-wave insulator, (TaSe4)2I. The origin of the emitted radiation is interpreted as a phason that obtains mass due to the long-range Coulomb interaction.

    • Soyeun Kim
    • , Yinchuan Lv
    •  & Fahad Mahmood
  • News & Views |

    Time-dependent pump–probe studies of polaritonic transport — for polaritons formed by strong coupling between organic molecules and Bloch surface waves at the interface of a distributed Bragg reflector — reveal a transition between diffusive and ballistic behaviour.

    • Jonathan Keeling
    •  & Graham Turnbull
  • News & Views |

    By exploiting optical phase-modulation at complex surface plasmon polariton patterns, as well as energy-filtered imaging, femtosecond electron pulses are dynamically shaped in phase and amplitude.

    • Armin Feist
  • Article |

    The authors report spin current generation in a metallic layer adjacent to a non-magnetic chiral hybrid organic–inorganic perovskite when subjected to a thermal gradient, and attribute this to chiral phonons possessing angular momentum.

    • Kyunghoon Kim
    • , Eric Vetter
    •  & Jun Liu
  • Article |

    On-demand electron wavefront shaping is desirable for applications from nanolithography to imaging. Here, the authors present tunable photon-induced spatial modulation of electrons through their interaction with externally controlled surface plasmon polaritons.

    • Shai Tsesses
    • , Raphael Dahan
    •  & Ido Kaminer
  • Article |

    The authors use circularly polarized light pulses to trigger all-optical magnetization switching in an atomically thin ferromagnetic semiconductor. The switching process is related to spin angular momentum transfer from photoexcited carriers to local magnetic moments.

    • Peiyao Zhang
    • , Ting-Fung Chung
    •  & Xiang Zhang
  • News & Views |

    Ensemble-level experimental evidence of exciton fine-structure splitting in perovskite quantum dots has been demonstrated, correlated to the intrinsic symmetry of these nanocrystals.

    • Gabriele Rainò
    •  & Maksym V. Kovalenko
  • News & Views |

    By exploiting subfemtosecond control of light pulses, researchers demonstrate an ultrafast logic gate based on the waveform-dependent photocurrent generated by real and virtual carriers in graphene.

    • Klaas-Jan Tielrooij
  • News & Views |

    Giant exciton–polaritons come to the scene from a thin Cu2O crystal sandwiched by a microcavity. Their anticipated strong interactions may facilitate the development of a promising Rydberg solid-state platform for quantum technologies.

    • HeeBong Yang
    •  & Na Young Kim
  • News & Views |

    Excitonic states with hybrid dimensionality in layered silicon diphosphide exhibit interesting features such as linearly dichroic photoluminescence and unusually strong exciton–phonon coupling.

    • Matthieu Fortin-Deschênes
    •  & Fengnian Xia
  • Article |

    The realization of large-scale exciton–polariton platforms operating at room temperature and exhibiting long-lived, strongly interacting excitons has been elusive. Here, the authors demonstrate a room-temperature perovskite-based polaritonic platform with a polariton lattice size of up to 10 × 10.

    • Renjie Tao
    • , Kai Peng
    •  & Wei Bao
  • Article |

    Departing from common approaches to designing Floquet topological insulators, here the authors present a photonic realization of Floquet topological insulators revealing topological phases that simultaneously support Chern and anomalous topological states.

    • Georgios G. Pyrialakos
    • , Julius Beck
    •  & Demetrios N. Christodoulides
  • News & Views |

    Tamm plasmon thermal emitters can provide efficient infrared emission, but are limited by design complexity. Now, the inverse design of Tamm modes facilitated by CdO films on aperiodic dielectric reflectors enables emission with an on-demand spectrum.

    • Juerg Leuthold
    •  & Alexander Dorodnyy
  • News & Views |

    Bright hot plasmon emission is observed in graphene due to the ultrafast relaxation of hot carriers that were excited by femtosecond laser pulses of visible light.

    • Frank H. L. Koppens
    •  & Klaas-Jan Tielrooij
  • Comment |

    Strong light–matter coupling in quantum cavities provides a pathway to break fundamental materials symmetries, like time-reversal symmetry in chiral cavities. This Comment discusses the potential to realize non-equilibrium states of matter that have so far been only accessible in ultrafast and ultrastrong laser-driven materials.

    • Hannes Hübener
    • , Umberto De Giovannini
    •  & Angel Rubio
  • Article |

    Counter-propagating chiral edge states are demonstrated in a photonic structure able to effectively incorporate fermionic time-reversal symmetry, thus providing the photonic implementation of an electronic topological insulator.

    • Lukas J. Maczewsky
    • , Bastian Höckendorf
    •  & Alexander Szameit
  • Article |

    Vectorial electromagnetic modes in coupled metallic nanolasers are used to emulate the behaviour of complex magnetic materials, providing an integrated nanophotonic platform to study spin exchange interactions and map large-scale optimization problems.

    • Midya Parto
    • , William Hayenga
    •  & Mercedeh Khajavikhan
  • Letter |

    The ultrafast response of a pyroelectric sensor with near-infrared responsivity is demonstrated by combining a pyroelectric thermal detector with wavelength-selective nanoparticle absorbers.

    • Jon W. Stewart
    • , Jarrett H. Vella
    •  & Maiken H. Mikkelsen