Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Broadband mid-infrared non-reciprocal absorption using magnetized gradient epsilon-near-zero thin films

Abstract

The study of magneto-optical absorption has stimulated diverse energy-technology-related explorations, showing potential in breaking the current theoretical efficiency limits of energy devices compared with reciprocal counterparts. However, experimentally realizing strong infrared non-reciprocal absorption remains an open challenge, and existing proposals of non-reciprocal absorbers are restricted to a narrow working waveband. Here we observe highly asymmetric absorption spectra over a broad mid-infrared band (nearly 10 μm) using doped InAs multilayers with gradient epsilon-near-zero frequencies. We reveal that the magnetized epsilon-near-zero behaviours and material loss play important roles in achieving strongly non-reciprocal absorption under a moderate external magnetic field using a thin epsilon-near-zero film (<λ/40, λ is the wavelength). Our approach enables flexible control over the working frequencies and non-reciprocal bandwidths by designing magnetized InAs films with different doping concentrations. The proposed principles can also be generalized to other III–V semiconductors, magnetized metals, topological Weyl semimetals, magnetized zero-index metamaterials and metasurfaces.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Schematics of non-reciprocal absorption control.
Fig. 2: Non-reciprocal absorption induced by asymmetric BMs.
Fig. 3: Dual-band non-reciprocal absorbers.
Fig. 4: Broadband non-reciprocal absorbers.

Similar content being viewed by others

Data availability

The data that support the plots within this paper and other findings of this study are available from the corresponding authors upon reasonable request.

References

  1. Qin, J. et al. Nanophotonic devices based on magneto-optical materials: recent developments and applications. Nanophotonics 11, 2639–2659 (2022).

    CAS  Google Scholar 

  2. Kimel, A. et al. The 2022 magneto-optics roadmap. J. Phys. D Appl. Phys. 55, 463003 (2022).

    Google Scholar 

  3. Qin, J. et al. Ultrahigh figure-of-merit in metal–insulator–metal magnetoplasmonic sensors using low loss magneto-optical oxide thin films. ACS Photon. 4, 1403–1412 (2017).

    CAS  Google Scholar 

  4. Wang, Z., Chong, Y. D., Joannopoulos, J. D. & Soljačić, M. Reflection-free one-way edge modes in a gyromagnetic photonic crystal. Phys. Rev. Lett. 100, 013905 (2008).

    Google Scholar 

  5. Stadler, B. J. H. & Mizumoto, T. Integrated magneto-optical materials and isolators: a review. IEEE Photonics J. 6, 0600215 (2014).

    CAS  Google Scholar 

  6. Berent, M., Rangelov, A. A. & Vitanov, N. V. Broadband Faraday isolator. J. Opt. Soc. Am. A 30, 149–153 (2013).

    Google Scholar 

  7. Armelles, G., Cebollada, A., García-Martín, A. & González, M. U. Magnetoplasmonics: combining magnetic and plasmonic functionalities. Adv. Opt. Mater. 1, 10–35 (2013).

    Google Scholar 

  8. Belotelov, V. I. et al. Enhanced magneto-optical effects in magnetoplasmonic crystals. Nat. Nanotechnol. 6, 370–376 (2011).

    CAS  Google Scholar 

  9. Xia, S. et al. Enhancement of the Faraday effect and magneto-optical figure of merit in all-dielectric metasurfaces. ACS Photon. 9, 1240–1247 (2022).

    CAS  Google Scholar 

  10. Li, W., Buddhiraju, S. & Fan, S. Thermodynamic limits for simultaneous energy harvesting from the hot sun and cold outer space. Light Sci. Appl. 9, 68 (2020).

    Google Scholar 

  11. Park, Y., Zhao, B. & Fan, S. Reaching the ultimate efficiency of solar energy harvesting with a nonreciprocal multijunction solar cell. Nano Lett. 22, 448–452 (2022).

    CAS  Google Scholar 

  12. Jafari Ghalekohneh, S. & Zhao, B. Nonreciprocal solar thermophotovoltaics. Phys. Rev. Appl. 18, 034083 (2022).

    CAS  Google Scholar 

  13. Park, Y., Omair, Z. & Fan, S. Nonreciprocal thermophotovoltaic systems. ACS Photon. 9, 3943–3949 (2022).

    CAS  Google Scholar 

  14. Bornatici, M. Theory of electron cyclotron absorption of magnetized plasmas. Plasma Phys. 24, 629–638 (1982).

    Google Scholar 

  15. Bornatici, M. & Engelmann, F. Electron‐cyclotron absorption and emission: ‘vexatae quaestiones’. Phys. Plasmas 1, 189–198 (1994).

    CAS  Google Scholar 

  16. Palik, E. D. & Furdyna, J. K. Infrared and microwave magnetoplasma effects in semiconductors. Rep. Prog. Phys. 33, 1193–1322 (1970).

    Google Scholar 

  17. Zhang, Z. & Zhu, L. Nonreciprocal thermal photonics for energy conversion and radiative heat transfer. Phys. Rev. Appl. 18, 027001 (2022).

    CAS  Google Scholar 

  18. Zhu, L. & Fan, S. Near-complete violation of detailed balance in thermal radiation. Phys. Rev. B 90, 220301 (2014).

    Google Scholar 

  19. Zhao, B. et al. Near-complete violation of Kirchhoff’s law of thermal radiation with a 0.3 T magnetic field. Opt. Lett. 44, 4203–4206 (2019).

    Google Scholar 

  20. Zhao, B., Guo, C., Garcia, C. A. C., Narang, P. & Fan, S. Axion-field-enabled nonreciprocal thermal radiation in Weyl semimetals. Nano Lett. 20, 1923–1927 (2020).

    CAS  Google Scholar 

  21. Pajovic, S., Tsurimaki, Y., Qian, X. & Chen, G. Intrinsic nonreciprocal reflection and violation of Kirchhoff’s law of radiation in planar type-I magnetic Weyl semimetal surfaces. Phys. Rev. B 102, 165417 (2020).

    CAS  Google Scholar 

  22. Park, Y. et al. Violating Kirchhoff’s law of thermal radiation in semitransparent structures. ACS Photon. 8, 2417–2424 (2021).

    CAS  Google Scholar 

  23. Hadad, Y., Soric, J. C. & Alu, A. Breaking temporal symmetries for emission and absorption. Proc. Natl Acad. Sci. USA 113, 3471–3475 (2016).

    CAS  Google Scholar 

  24. Liu, M. Q. & Zhao, C. Y. Near-infrared nonreciprocal thermal emitters induced by asymmetric embedded eigenstates. Int. J. Heat. Mass Transf. 186, 122435 (2022).

    Google Scholar 

  25. Shayegan, K. J., Zhao, B., Kim, Y., Fan, S. & Atwater, H. A. Nonreciprocal infrared absorption via resonant magneto-optical coupling to InAs. Sci. Adv. 8, eabm4308 (2022).

    CAS  Google Scholar 

  26. Liu, T., Guo, C., Li, W. & Fan, S. Thermal photonics with broken symmetries. eLight 2, 25 (2022).

    Google Scholar 

  27. Kirchhoff, G. I. On the relation between the radiating and absorbing powers of different bodies for light and heat. Lond. Edinb. Dublin Philos. Mag. J. Sci. 20, 1–21 (1860).

    Google Scholar 

  28. Snyder, W. C., Wan, Z. & Li, X. Thermodynamic constraints on reflectance reciprocity and Kirchhoff’s law. Appl. Opt. 37, 3464 (1998).

    CAS  Google Scholar 

  29. Tsurimaki, Y. et al. Large nonreciprocal absorption and emission of radiation in type-I Weyl semimetals with time reversal symmetry breaking. Phys. Rev. B 101, 165426 (2020).

    CAS  Google Scholar 

  30. Ghanekar, A., Wang, J., Fan, S. & Povinelli, M. L. Violation of Kirchhoff’s law of thermal radiation with space–time modulated grating. ACS Photon. 9, 1157–1164 (2022).

    CAS  Google Scholar 

  31. Guo, C., Asadchy, V. S., Zhao, B. & Fan, S. Light control with Weyl semimetals. eLight 3, 2 (2023).

    Google Scholar 

  32. Kalish, A. N. et al. Magnetoplasmonic quasicrystals: an approach for multiband magneto-optical response. Optica 5, 617–623 (2018).

    Google Scholar 

  33. Dyakov, S. A. et al. Wide-band enhancement of the transverse magneto-optical Kerr effect in magnetite-based plasmonic crystals. Phys. Rev. B 100, 214411 (2019).

    CAS  Google Scholar 

  34. Hasselbeck, M. P. et al. Emission of terahertz radiation from coupled plasmon-phonon modes in InAs. Phys. Rev. B 65, 233203 (2002).

    Google Scholar 

  35. De, A. & Puri, A. Large plasma-edge broadened magneto-optic-polar-Kerr-effect-based broadband incoherent detection of terahertz spectral frequencies. Appl. Phys. Lett. 86, 091103 (2005).

    Google Scholar 

  36. Halterman, K., Alidoust, M. & Zyuzin, A. Epsilon-near-zero response and tunable perfect absorption in Weyl semimetals. Phys. Rev. B 98, 085109 (2018).

    CAS  Google Scholar 

  37. Campione, S., Brener, I. & Marquier, F. Theory of epsilon-near-zero modes in ultrathin films. Phys. Rev. B 91, 121408 (2015).

    Google Scholar 

  38. Kinsey, N., DeVault, C., Boltasseva, A. & Shalaev, V. M. Near-zero-index materials for photonics. Nat. Rev. Mater. 4, 742–760 (2019).

    CAS  Google Scholar 

  39. Xu, J. & Raman, A. P. Broadband directional control of thermal emission. Science 372, 393–397 (2021).

    CAS  Google Scholar 

  40. Sakotic, Z., Krasnok, A., Cselyuszka, N., Jankovic, N. & Alú, A. Berreman embedded eigenstates for narrow-band absorption and thermal emission. Phys. Rev. Appl. 13, 064073 (2020).

    CAS  Google Scholar 

  41. Berreman, D. W. Infrared absorpton at longitudinal optic frequency in cubic crystal films. Phys. Rev. 130, 2193–2198 (1963).

    CAS  Google Scholar 

  42. Vassant, S., Hugonin, J.-P., Marquier, F. & Greffet, J.-J. Berreman mode and epsilon near zero mode. Opt. Express 20, 23971–23977 (2012).

    Google Scholar 

  43. Liu, M. et al. Evolution and nonreciprocity of loss-induced topological phase singularity pairs. Phys. Rev. Lett. 127, 266101 (2021).

    CAS  Google Scholar 

  44. Krasnok, A. et al. Anomalies in light scattering. Adv. Opt. Photon. 11, 892–951 (2019).

    Google Scholar 

  45. Tian, J. et al. High-Q all-dielectric metasurface: super and suppressed optical absorption. ACS Photon. 7, 1436–1443 (2020).

    CAS  Google Scholar 

  46. Liu, M. et al. Spectral phase singularity and topological behavior in perfect absorption. Phys. Rev. B 107, L241403 (2023).

    CAS  Google Scholar 

  47. Poddubny, A., Iorsh, I., Belov, P. A. & Kivshar, Y. Hyperbolic metamaterials. Nat. Photon. 7, 948–957 (2013).

    CAS  Google Scholar 

  48. Kim, M. et al. Natural hyperbolic dispersion with anisotropic epsilon-near-zero and epsilon-near-pole in squaraine molecular film. Adv. Opt. Mater. 9, 2101091 (2021).

    CAS  Google Scholar 

Download references

Acknowledgements

C.Y.Z. acknowledges the National Natural Science Foundation of China (no. 52120105009) and the Shanghai Key Fundamental Research Grant (no. 20JC1414800). C.-W.Q. acknowledges financial support from the NRF, Prime Minister’s Office, Singapore, under the Competitive Research Program Award (NRF-CRP26-2021-0063). M.Q.L. acknowledges support from the China Postdoctoral Science Foundation (nos. BX20220200 and 2023M732199) and the SJTU-NUS Joint PhD Project. L.B., S.X. and J.Q. acknowledge financial support from the Ministry of Science and Technology of the People’s Republic of China (no. 2021YFB2801600), the National Natural Science Foundation of China (nos. 51972044, 52021001, 52102357 and U22A20148), Sichuan Provincial Science and Technology Department (nos. 2019YFH0154, 2020ZYD015, 2021YFSY0016 and 99203070) and the Fundamental Research Funds for the Central Universities (no. ZYGX2020J005). H.L. acknowledges the National Natural Science Foundation of China (nos. 62022084 and 62235019), Chinese Academy of Sciences (nos. ZDBS-LY-JSC009, YJKYYQ20200032 and YSBR-069) and Science and Technology Commission of Shanghai Municipality (no. 20XD1424700). We also acknowledge the analysis support from the Instrumental Analysis Center of Shanghai Jiao Tong University.

Author information

Authors and Affiliations

Authors

Contributions

M.Q.L., C.Y.Z. and C.-W.Q. conceived the ideas. M.Q.L. performed the simulations and advised about the experimental design. L.B. and H.L. led the experiments. W.J.W. fabricated the samples. M.Q.L. performed the optical characteristic measurements. S.X. performed the optical measurements. M.Q.L., S.X., J.Q., H.L., L.B. and C.-W.Q. analysed the data and all the authors discussed the results. M.Q.L. wrote the paper with inputs and comments from all authors. H.L., L.B., C.Y.Z. and C.-W.Q. supervised the project.

Corresponding authors

Correspondence to Hua Li, Changying Zhao, Lei Bi or Cheng-Wei Qiu.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Materials thanks the anonymous reviewers for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–18, Sections 1–7 and Table 1.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, M., Xia, S., Wan, W. et al. Broadband mid-infrared non-reciprocal absorption using magnetized gradient epsilon-near-zero thin films. Nat. Mater. 22, 1196–1202 (2023). https://doi.org/10.1038/s41563-023-01635-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41563-023-01635-9

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing