Materials science articles within Nature Materials

Featured

  • Article |

    Direct observation of noble gas structures has been achieved at room temperature using electron microscopy. This was enabled by trapping them between two layers of graphene, where they form two-dimensional clusters.

    • Manuel Längle
    • , Kenichiro Mizohata
    •  & Jani Kotakoski
  • Article
    | Open Access

    Hydrogen produced by water splitting using renewable electricity is key to achieve net-zero carbon emissions. Decoupling hydrogen and oxygen evolution reactions during electrolysis is attractive but efficiency and operational challenges remain. A process producing hydrogen and oxygen in separate cells and supporting continuous operation in a membraneless system is now proposed.

    • Ilya Slobodkin
    • , Elena Davydova
    •  & Avner Rothschild
  • Article |

    The local layer alignment in a wide range of trilayer graphene structures has been extracted by interferometric four-dimensional scanning transmission electron microscopy, uncovering the complex picture of lattice reconstruction in twisted trilayers.

    • Isaac M. Craig
    • , Madeline Van Winkle
    •  & D. Kwabena Bediako
  • Article |

    Propagation losses have limited the practical use of polaritons in photonic applications. Here the authors demonstrate a substantial enhancement in the propagation distance of phonon polaritons, employing synthetic optical excitation of complex frequency with virtual gain synthesized by combining multiple real frequency measurements.

    • Fuxin Guan
    • , Xiangdong Guo
    •  & Shuang Zhang
  • Article |

    The metal monochalcogenides are a group of van der Waals layered semiconductors with ultra-high plasticity. It is now revealed that their plasticity is attributed to the ability to transform their stacking order or phases, coupled with the concurrent generation of a micro-crack network.

    • Lok Wing Wong
    • , Ke Yang
    •  & Jiong Zhao
  • Article |

    Employing light-transformable polymers, multiple physical unclonable functions are demonstrated within a single device with all-optical reversible reconfigurability. Such devices may enable quantum secure authentication and nonlinear cryptographic key generation applications.

    • Sara Nocentini
    • , Ulrich Rührmair
    •  & Francesco Riboli
  • Article
    | Open Access

    Current organic proton detectors have poor detection sensitivities due to low light yields and limited radiation toleration. Here the authors report a perovskite nanocrystal-based transmissive thin scintillator that can detect seven protons per second, enabled by radiative emission from biexcitons.

    • Zhaohong Mi
    • , Hongyu Bian
    •  & Xiaogang Liu
  • Letter |

    Multiferroics can possess multiple ferroic orders, for example, electric polarization and magnetism, and are of interest for new device applications. Here thermal control is shown to manipulate electric and magnetic orders in a single-phase quasi-two-dimensional halide perovskite.

    • Tong Zhu
    • , Xue-Zeng Lu
    •  & Hiroshi Kageyama
  • Article |

    Biological tissues are extremely water rich but remain mechanically stiff, behaviour that is difficult to recapitulate in synthetic materials. Here the authors design a hydrogel/sponge hybrid material driven by a self-organized network of cyano-p-aramid nanofibres that combines these properties for biofunctional materials.

    • Minkyung Lee
    • , Hojung Kwak
    •  & Dongyeop X. Oh
  • Article |

    Autonomous assembly, reconfiguration and disassembly are observed in living aggregates, but are difficult to replicate in synthetic soft matter. Here mechanically interlocked responsive ribbons form transient viscoelastic solids for the on-demand assembly of functional materials.

    • Mustafa K. Abdelrahman
    • , Robert J. Wagner
    •  & Taylor H. Ware
  • Feature |

    Frustrated by reproducibility in electrical measurements on ferroelectric films, Lane Martin, Jon-Paul Maria and Darrell Schlom discuss tactics to reliably synthesize ‘good’ ferroelectric samples, especially in the search for superior materials and device heterostructures.

    • Lane W. Martin
    • , Jon-Paul Maria
    •  & Darrell G. Schlom
  • Feature |

    Kinetic trapping in supramolecular gels leads to varied morphologies and macroscopic properties. Emily R. Draper and Dave J. Adams discuss subtle experimental effects that can lead to reproducibility issues in these systems.

    • Emily R. Draper
    •  & Dave J. Adams
  • Feature |

    Peng Wu, Tianyi Zhang, Jiadi Zhu, Tomás Palacios and Jing Kong discuss the reproducibility issues in the synthesis and device fabrication of two-dimensional transition metal dichalcogenides that need to be addressed to enable the lab-to-fab transition.

    • Peng Wu
    • , Tianyi Zhang
    •  & Jing Kong
  • Feature |

    Marc Legros, Frédéric Mompiou and Daniel Caillard discuss the different aspects that influence the reproducibility and reliability of characterizations performed using in situ mechanical tests in transmission electron microscopes.

    • Marc Legros
    • , Frédéric Mompiou
    •  & Daniel Caillard
  • Feature |

    M. I. Eremets, V. S. Minkov, A. P. Drozdov and P. P. Kong discuss the substantial progress made in discovering and developing near-room-temperature superconductivity in hydrogen-rich materials. They focus on achieving reproducibility under the challenging experimental conditions of megabar pressures.

    • M. I. Eremets
    • , V. S. Minkov
    •  & P. P. Kong
  • Feature |

    The materials modelling community is emerging as a champion for reproducible and reusable science. Aron Walsh discusses how FAIR databases, collaborative codes and transparent workflows are advancing this movement.

    • Aron Walsh
  • Feature |

    Tae Hoon Lee and Zachary P. Smith argue that some of the most exciting materials that could be used for gas separations are metastable or crystalline, with properties that are altered by sample preparation and testing, but there are no widely accepted standards.

    • Tae Hoon Lee
    •  & Zachary P. Smith
  • Feature |

    Joseph Heremans and Joshua Martin discuss the reproducibility of thermoelectric measurements and conclude that the uncertainty on the figure of merit zT is of the order of 15–20%.

    • Joseph P. Heremans
    •  & Joshua Martin
  • Letter |

    Plastic deformation requires the propagation of a kinked profile along dislocations. It is shown that each kink acts as a set of travelling thermal spikes, favouring the nucleation of supplementary kinks and long dislocation jumps that are observed experimentally.

    • Laurent Proville
    •  & Anshuman Choudhury
  • Article |

    Employing nonlinear, time-resolved terahertz spectroscopy to study condensate dynamics on Ta2NiSe5—a narrow-bandgap semiconductor and putative excitonic insulator—the authors reveal enhanced terahertz reflectivity upon photoexcitation and condensation-like temperature dependence below the structural transition critical temperature.

    • Sheikh Rubaiat Ul Haque
    • , Marios H. Michael
    •  & Richard D. Averitt
  • Article
    | Open Access

    The self-assembly of metallic nanoparticles on oxide supports via metal exsolution relies on dopant transport, but strong electrostatic gradients and space charges typically control the properties of surfaces. The surface–dopant interaction is shown to be the main determining factor for the exsolution kinetics of nickel in a perovskite system.

    • Moritz L. Weber
    • , Břetislav Šmíd
    •  & Christian Lenser
  • Research Briefing |

    Inspired by the observed coherent interface between hexagonal α-Fe2O3 and tetragonal fluorine-doped SnO2, an oxygen sublattice-matching paradigm is proposed to grow textured films on lattice-mismatched substrates. Through assessing the similarity of Voronoi cells for sublattices, this approach offers opportunities to synthesize (semi)coherent heterostructures and textured films.

  • News & Views |

    An important but difficult separation, the removal of carbon monoxide from humid gas mixtures comprising oxygen, nitrogen and hydrocarbons, is addressed by exploiting Cu(I) coordination chemistry and framework flexibility.

    • Michael J. Zaworotko
  • News & Views |

    Incorporating additives that contain hydrogen-bonding nanochannels creates nanoconfined polymer gels that are highly stretchable, elastic and insensitive to notch propagation.

    • Meixiang Wang
    •  & Michael D. Dickey
  • News & Views |

    Engineered ligand shells on gold nanoclusters utilizing molecular motion improve the thermal conductance between the cluster and the solvent, increasing thermal stability and enhancing performance in the photothermal treatment of cancerous tumours.

    • Jacob L. Beckham
    •  & James M. Tour
  • News & Views |

    Orthogonally twisted CrSBr ferromagnetic monolayers with in-plane Ising anisotropies are found to exhibit multistep magnetoresistance switching with a magnetic hysteresis opening. This work emphasizes the role of spin dimensionality in two-dimensional magnets, and the potential of orthogonal and large-twist-angle van der Waals magnets.

    • Lan Wang
  • News & Views |

    Processible centimetre-scale porous glasses using zeolitic imidazolate framework (ZIF) materials are developed, while fine-tuning of the processing conditions allows control of pore size and molecular sieving properties.

    • Georgia R. F. Orton
    •  & Neil R. Champness
  • Article
    | Open Access

    Porosity of zeolitic imidazolate frameworks can be preserved beyond glass transition and melt processing. Here centimetre-scale porous glasses are demonstrated, whereas liquid processing enables fine-tuning of the size of the gas-transporting channels for molecular sieving.

    • Oksana Smirnova
    • , Seungtaik Hwang
    •  & Alexander Knebel
  • News & Views |

    An all-electric switch of the persistent electron swirl in a quantum anomalous Hall state enables researchers to flip the electronic chirality of this quantum state.

    • Philip J. W. Moll
  • News & Views |

    By forming a heterostructure interface, and by judicious choice of crystallographic orientation, piezoelectrics are developed that show expansion or contraction along all axes on application of an electric field.

    • Eugene A. Eliseev
    •  & Anna N. Morozovska
  • Article |

    Depositing textured functional materials on transparent conducting oxides remains a challenge. We demonstrate the formation of a coherent interface between a set of functional oxides and fluorine-doped-tin-oxide-based transparent conducting oxide substrate despite the lattice mismatch, owing to dimensional and chemical matching of oxygen sublattices at the interface.

    • Huiting Huang
    • , Jun Wang
    •  & Zhigang Zou
  • Research Briefing |

    Oxidation can degrade the properties and functionality of three-dimensional bulk metallic glasses. However, the formation of percolating oxide networks in metallic glass nanotubes or nanosheets can induce interesting properties, such as a recoverable strain of 10–20% and elastic modulus of 20–30 GPa, which are rarely observed in their bulk counterparts.

  • Letter |

    Oxidation normally deteriorates the mechanical properties of metals. But it is now shown that the formation of a percolating oxide network in metallic glass nanotubes can result in an unprecedented superelasticity of 14% at room temperature.

    • Fucheng Li
    • , Zhibo Zhang
    •  & Yong Yang
  • Article
    | Open Access

    Piezoelectrics have longitudinal and transverse piezoelectric coefficients that are opposite in sign. Here, by tuning the interface inversion asymmetry in heterostructures, auxetic systems with positive longitudinal and transverse coefficients are realized, with expansion or contraction along all directions in an electric field.

    • Ming-Min Yang
    • , Tian-Yuan Zhu
    •  & Marin Alexe
  • News & Views |

    By inserting an epitaxial in-plane buffer layer of Bi5FeTi3O15, an artificial flux closure architecture enables ferroelectric polarization from a single unit cell of BaTiO3 or BiFeO3.

    • Neus Domingo
  • Research Briefing |

    The discovery of passivating agents for perovskite photovoltaics can be an arduous and time-consuming process. Now, a machine-learning model is reported that accelerates the selection of bifunctional pseudo-halide passivators. The identified pseudo-halide passivators were experimentally shown to enhance the performance of perovskite solar cells.

  • News & Views |

    Three protein interaction surfaces are computationally designed into one protein subunit to enable their accurate assembly into three-dimensional crystals with user-specified lattice architectures.

    • Eduardo Anaya-Plaza
    •  & Mauri A. Kostiainen
  • Research Briefing |

    Polymers made by click chemistry with spirocyclic building blocks form membranes that separate the components of crude oil based on molecular size and type, potentially using far less energy than distillation. Key enablers of this separation are moderate levels of polymer dynamic motion and frustrated chain packing.

  • News & Views |

    Hybridized electron or hole states across semiconducting van der Waals monolayers in heterotrilayer systems enable the emergence of quadrupolar excitons. Quadrupolar excitons, unlike their dipolar counterparts, have a tunable static dipole moment that responds nonlinearly under an applied electric field.

    • Elyse Barré
    • , Medha Dandu
    •  & Archana Raja
  • News & Views |

    Heat treatment can transform some moiré superlattices into fully commensurate bilayers, where atoms in opposite layers align perfectly with each other. This structural transformation gives rise to markedly brighter interlayer excitons.

    • Chun Hung Lui