Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Terahertz parametric amplification as a reporter of exciton condensate dynamics

Abstract

Condensates are a hallmark of emergence in quantum materials such as superconductors and charge density waves. Excitonic insulators are an intriguing addition to this library, exhibiting spontaneous condensation of electron–hole pairs. However, condensate observables can be obscured through parasitic coupling to the lattice. Here we employ nonlinear terahertz spectroscopy to disentangle such obscurants through measurement of the quantum dynamics. We target Ta2NiSe5, a putative room-temperature excitonic insulator in which electron–lattice coupling dominates the structural transition (Tc = 326 K), hindering identification of excitonic correlations. A pronounced increase in the terahertz reflectivity manifests following photoexcitation and exhibits a Bose–Einstein condensation-like temperature dependence well below the Tc, suggesting an approach to monitor the exciton condensate dynamics. Nonetheless, dynamic condensate–phonon coupling remains as evidenced by peaks in the enhanced reflectivity spectrum at select infrared-active phonon frequencies, indicating that parametric reflectivity enhancement arises from phonon squeezing. Our results highlight that coherent dynamics can drive parametric stimulated emission.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Experimental study of TNS.
Fig. 2: Temperature dependence of the reflectivity enhancement.
Fig. 3: Reflectivity enhancement dynamics.
Fig. 4: Description of parametric amplification at 4.7 THz.

Similar content being viewed by others

Data availability

The data presented in this manuscript are available from the corresponding author upon reasonable request. Source data are provided with this paper.

Code availability

The data presented in this manuscript were analysed and plotted with MATLAB v.R2018a and are available from the corresponding author upon reasonable request.

References

  1. Jérome, D., Rice, T. & Kohn, W. Excitonic insulators. Phys. Rev. 158, 462–475 (1967).

    Article  Google Scholar 

  2. Eisenstein, J. P. Exciton condensation in bilayer quantum Hall systems. Annu. Rev. Condens. Matter Phys. 5, 159–181 (2014).

    Article  CAS  Google Scholar 

  3. Amo, A. et al. Superfluidity of polaritons in semiconductor microcavities. Nat. Phys. 5, 805–810 (2009).

    Article  CAS  Google Scholar 

  4. Kaneko, T., Toriyama, T., Konishi, T. & Ohta, Y. Orthorhombic-to-monoclinic phase transition induced by the Bose–Einstein condensate of excitons. Phys. Rev. B 87, 035121 (2013).

    Article  Google Scholar 

  5. Werdehausen, D. et al. Coherent order parameter oscillations in the ground state of the excitonic insulator Ta2NiSe5. Sci. Adv. 4, eaap8652 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  6. Sugimoto, K., Nishimoto, S., Kaneko, T. & Ohta, Y. Strong coupling nature of the excitonic insulator state in Ta2NiSe5. Phys. Rev. Lett. 120, 247602 (2018).

    Article  CAS  PubMed  Google Scholar 

  7. Mazza, G. et al. Nature of symmetry breaking at the excitonic insulator transition: Ta2NiSe5. Phys. Rev. Lett. 124, 197601 (2020).

    Article  CAS  PubMed  Google Scholar 

  8. Lu, Y. F. et al. Zero-gap semiconductor to excitonic insulator transition in Ta2NiSe5. Nat. Commun. 8, 14408 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Kogar, A. et al. Signatures of exciton condensation in a transition metal dichalcogenide. Science 358, 1314–1317 (2017).

    Article  CAS  PubMed  Google Scholar 

  10. Song, Y. et al. Evidences for the exciton gas phase and its condensation in monolayer 1T-ZrTe2. Nat. Commun. 14, 1116 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Golež, D., Sun, Z., Murakami, Y., Georges, A. & Millis, A. J. Nonlinear spectroscopy of collective modes in an excitonic insulator. Phys. Rev. Lett. 125, 257601 (2020).

    Article  PubMed  Google Scholar 

  12. Larkin, T. I. et al. Giant exciton Fano resonance in quasi-one-dimensional Ta2NiSe5. Phys. Rev. B 95, 195144 (2017).

    Article  Google Scholar 

  13. Larkin, T. I. et al. Infrared phonon spectra of quasi-one-dimensional Ta2NiSe5 and Ta2NiS5. Phys. Rev. B 98, 125113 (2018).

    Article  CAS  Google Scholar 

  14. Mor, S. et al. Inhibition of the photoinduced structural phase transition in the excitonic insulator Ta2NiSe5. Phys. Rev. B 97, 115154 (2018).

    Article  CAS  Google Scholar 

  15. Seki, K. et al. Excitonic Bose–Einstein condensation in Ta2NiSe5 above room temperature. Phys. Rev. B 90, 155116 (2014).

    Article  Google Scholar 

  16. Nakano, A. et al. Antiferroelectric distortion with anomalous phonon softening in the excitonic insulator Ta2NiSe5. Phys. Rev. B 98, 045139 (2018).

    Article  CAS  Google Scholar 

  17. Saha, T. et al. Photoinduced phase transition and associated timescales in the excitonic insulator Ta2NiSe5. Phys. Rev. B 103, 144304 (2021).

    Article  CAS  Google Scholar 

  18. Lee, J. et al. Strong interband interaction in the excitonic insulator phase of Ta2NiSe5. Phys. Rev. B 99, 075408 (2019).

    Article  CAS  Google Scholar 

  19. Kim, K. et al. Direct observation of excitonic instability in Ta2NiSe5. Nat. Commun 12, 1969 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Kim, M. J. et al. Phononic soft mode behavior and a strong electronic background across the structural phase transition in the excitonic insulator Ta2NiSe5. Phys. Rev. Research 2, 042039I (2020).

    Article  Google Scholar 

  21. Bretscher, H. M. et al. Ultrafast melting and recovery of collective order in the excitonic insulator Ta2NiSe5. Nat. Commun. 12, 1699 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Werdehausen, D. et al. Photo-excited dynamics in the excitonic insulator Ta2NiSe5. J. Phys. Condens. Matter 30, 305602 (2018).

    Article  PubMed  Google Scholar 

  23. Baldini, E. et al. The spontaneous symmetry breaking in Ta2NiSe5 is structural in nature. Proc. Natl Acad. Sci. USA 120, e2221688120 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Subedi, A. Orthorhombic-to-monoclinic transition in Ta2NiSe5 due to a zone-center optical phonon instability. Phys. Rev. Materials 4, 083601 (2020).

    Article  CAS  Google Scholar 

  25. Windgätter, L. et al. Common microscopic origin of the phase transition in Ta2NiS5 and the excitonic insulator candidate Ta2NiSe5. NPJ Comput. Mater. 7, 210 (2021).

    Article  Google Scholar 

  26. Volkov, P. A. et al. Critical charge fluctuations and quantum coherent state in excitonic insulator Ta2NiSe5. NPJ Quantum Mater. 6, 52 (2021).

    Article  CAS  Google Scholar 

  27. Pal, S. et al. Destabilizing excitonic insulator phase by pressure tuning of exciton phonon coupling. Phys. Rev. Res. 2, 043182 (2020).

    Article  CAS  Google Scholar 

  28. Tang, T. et al. Non-Coulomb strong electron–hole binding in Ta2NiSe5 revealed by time- and angle-resolved photoemission spectroscopy. Phys. Rev. B 101, 235148 (2020).

    Article  CAS  Google Scholar 

  29. Chen, L. et al. Doping-controlled transition from excitonic insulator to semimetal in Ta2NiSe5. Phys. Rev. B 102, 161116I (2020).

    Article  Google Scholar 

  30. Seo, Y. S. et al. Temperature-dependent excitonic superfluid plasma frequency evolution in an excitonic insulator. Sci. Rep. 8, 11961 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  31. Wakisaka, Y. et al. Excitonic insulator state in Ta2NiSe5 probed by photoemission spectroscopy. Phys. Rev. Lett. 103, 026402 (2009).

    Article  CAS  PubMed  Google Scholar 

  32. Bretscher, H. M. et al. Imaging the coherent propagation of collective modes in the excitonic insulator Ta2NiSe5 at room temperature. Sci. Adv. 7, eabd6147 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Golež, D. et al. Unveiling the underlying interactions in Ta2NiSe5 from photo-induced lifetime change. Phys. Rev. B 106, L121106 (2022).

    Article  Google Scholar 

  34. Ye, M. et al. Lattice dynamics of the excitonic insulator Ta2Ni(Se1−xSx)5. Phys. Rev. B 104, 045102 (2021).

    Article  CAS  Google Scholar 

  35. Fukutani, K. et al. Detecting photoelectrons from spontaneously formed excitons. Nat. Phys. 17, 1024–1030 (2021).

    Article  CAS  Google Scholar 

  36. Rajasekaran, S. et al. Probing optically silent superfluid stripes in cuprates. Science 359, 575–579 (2018).

    Article  CAS  PubMed  Google Scholar 

  37. Matsunaga, R. et al. Light-induced collective pseudospin precession resonating with Higgs mode in a superconductor. Science 345, 1145–1149 (2013).

    Article  Google Scholar 

  38. Kabanov, V. V., Demser, J., Podonik, B. & Mihailovic, D. Quasiparticle relaxation dynamics in superconductors with different gap structures: theory and experiments on YBa2Cu3O7-δ. Phys. Rev. B 59, 1497 (1999).

    Article  CAS  Google Scholar 

  39. Kabanov, V. V., Demser, J. & Mihailovic, D. Kinetics of a superconductor excited with a femtosecond optical pulse. Phys. Rev. Lett. 95, 147002 (2005).

    Article  CAS  PubMed  Google Scholar 

  40. Michael, M. H. et al. Generalized Fresnel–Floquet equations for driven quantum materials. Phys. Rev. B 105, 174301 (2022).

    Article  CAS  Google Scholar 

  41. Xie, X., Dai, J. & Zhang, X. C. Coherent control of THz wave generation in ambient air. Phys. Rev. Lett. 96, 075005 (2006).

    Article  PubMed  Google Scholar 

  42. Dai, J., Karpowicz, N. & Zhang, X. C. Coherent polarization control of terahertz waves generated from two-color laser-induced gas plasma. Phys. Rev. Lett. 103, 023001 (2009).

    Article  PubMed  Google Scholar 

  43. Werley, C. A., Teo, S. M. & Nelson, K. A. Pulsed laser noise analysis and pump–probe signal detection with a data acquisition car. Rev. Sci. Instrum. 82, 123108 (2011).

    Article  PubMed  Google Scholar 

  44. Kindt, J. T. & Schmuttenmaer, C. A. Theory of determination of the low-frequency time-dependent response function in liquids using time-resolved terahertz pulse spectroscopy. J. Chem. Phys. 110, 8589–8596 (1999).

    Article  CAS  Google Scholar 

  45. Coslovich, G. et al. Ultrafat dynamics of a vibrational symmetry breaking in a charge-ordered nickelate. Sci. Adv. 3, e1600735 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  46. Rajasekaran, S. et al. Parametric amplification of a superconducting plasma wave. Nat. Phys. 12, 1012–1016 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Kennes, D. M., Wilner, E. Y., Reichman, D. R. & Millis, A. J. Transient superconductivity from electronic squeezing of optically pumped phonons. Nat. Phys. 13, 479–483 (2017).

    Article  CAS  Google Scholar 

  48. Garrett, G. A., Rojo, A. G., Sood, A. K., Whitaker, J. F., & Merlin, R. Vacuum squeezing of solids: macroscopic quantum states driven by light pulses. Science 275, 1638–1640 (1997).

    Article  CAS  PubMed  Google Scholar 

  49. Buzzi, M. et al. Higgs-mediated optical amplification in a nonequilibrium superconductor. Phys. Rev. X 11, 011055 (2021).

    CAS  Google Scholar 

  50. Kresse, G. & Furthmüller, J. Efficient iterative schemes for ab inito total-energy calculations using a plane-wave basis set. Phys. Rev. B 54, 11169–11186 (1996).

    Article  CAS  Google Scholar 

  51. Kresse, G. & Furthmüller, J. Efficiency of ab inito total-energy calculations for metals and semiconductors using a plane-wave basis set. Comp. Mater. Sci. 6, 15–50 (1996).

    Article  CAS  Google Scholar 

  52. Kresse, G. & Hafner, J. Ab initio molecular dynamics for liquid metals. Phys. Rev. B 47, 558–561 (1993).

    Article  CAS  Google Scholar 

  53. Kresse, G. & Hafner, J. Norm-conserving and ultrasoft pseudopotentials for first-row and transition elements. J. Phys. Condens. Matter 6, 8245–8257 (1994).

    Article  CAS  Google Scholar 

  54. Kilmeš, J., Bowler, D. R. & Michaelides, A. Van der Waals density functionals applied to solids. Phys. Rev. B 83, 195131 (2011).

    Article  Google Scholar 

  55. Kilmeš, J., Bowler, D. R. & Michaelides, A. Chemical accuracy for the van der Waals density functional. J. Phys. Condens. Matter 22, 022201 (2009).

    Article  Google Scholar 

  56. Skelton, J. M. et al. Lattice dynamics of the tin sulphides SnS2, SnS and Sn2S3: vibrational spectra and thermal transport. Phys. Chem. Chem. Phys. 19, 12452–12465 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Togo, A. & Tanaka, I. First principles phonon calculations in materials science. Scr. Mater. 108, 1–5 (2015).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank D. Hsieh, P. Narang, M. K. Liu and A. Kogar for fruitful discussions. S.R.U.H., M.H.M., J. Zhu, Y.Z., J.P.W., G.-F.Z., J. Zhang, J.G.C., E.D. and R.D.A. acknowledge support from the DARPA ‘Driven Nonequilibrium Quantum Systems’ (DRINQS) programme under award number D18AC00014. E.D. acknowledges support from SNSF project 200021_212899 and ARO grant number W911NF-21-1-0184. L.W., S.L. and A.R. acknowledge support from the European Research Council (ERC-2015-AdG694097), the Cluster of Excellence ‘Advanced Imaging of Matter’ (AIM), Grupos Consolidados (IT1249-19) and Deutsche Forschungsgemeinschaft (DFG) – SFB-925 – project 170620586. A.R. also thanks the Flatiron Institute, a division of the Simons Foundation.

Author information

Authors and Affiliations

Authors

Contributions

R.D.A. and S.R.U.H. conceived the project. J. Zhu, J.P.W. and J.G.C. performed the material growth and characterization. S.R.U.H., G.-F.Z. and J. Zhang built the experimental set-up. S.R.U.H., Y.Z. and G.-F.Z. performed the optical pump–THz probe measurements. S.R.U.H. analysed the data. M.H.M. and E.D. performed the first-principles calculation and numerical simulations. L.W., S.L. and A.R. performed the DFT analysis. All authors participated in the discussion and interpretations of the results. R.D.A. and E.D. supervised the project. S.R.U.H. and R.D.A. wrote the manuscript with input from all authors.

Corresponding author

Correspondence to Richard D. Averitt.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Materials thanks Dragan Mihailovic and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data

Extended Data Fig. 1 Transport properties of Ta2 NiSe5.

Resistivity of Ta2 NiSe5 single crystal plotted against the temperature. The blue triangle emphasizes an anomaly at T=326 K, corresponding to the temperature of the phase transition.

Source data

Extended Data Fig. 2 Experimental set-up and THz generation.

a, Experimental set-up for near-infrared pump – broadband THz probe spectroscopy. DWP: dual wave plate, OPA: optical parametric amplifier, BBO: β-Barium Borate, QWP: quarter wave plate, PD: photodiode. 2.4 μm pump beams are generated as idler beams from the OPA while broadband THz probe pulses are generated from a two-colour laser-induced air plasma. GaP crystal is utilized as the EO sampling crystal. b, Horizontally polarized 800 nm pulses generate vertically polarized 400 nm pulses after passing through the BBO crystal. The DWP rotates the 800 nm polarization from horizontal to vertical. Both beams are focused into the air and create an air plasma which radiates broadband THz waves. Arrows indicate the polarization directions. Inset shows a detailed schematic of the THz generation process from the air plasma.

Extended Data Fig. 3 Time-domain THz signal and corresponding spectrum.

a, Reflected time-domain signal (TDS) from a gold mirror (reference), a 300 μm-thick 〈110〉 GaP was used to detect the signal. b, The corresponding normalized spectrum showing a broadband spectral regime of 0.5–7.5 THz.

Source data

Extended Data Fig. 4 Equilibrium reflectivity and optical conductivity.

a, Equilibrium reflectivity and b, optical conductivity along the a-axis as a function of temperature. Phonon locations are denoted by grey dashed lines.

Source data

Extended Data Fig. 5 Dynamics of the reflectivity enhancement.

Dynamics of reflectivity enhancement ΔR/R at 4.7 THz (left axes, closed squares) and integrated pump-induced change in reflectivity spectral weight Δη (right axes, open circles) as a function of fluences of 0.2 mJ cm−2 (a,c,e,g,i,k,m,o) and 0.4 mJ cm−2 (b,d,f,h,j,l,n,p) at 90 K (a,b), 120 K (c,d), 150 K (e,f), 180 K (g,h), 210 K (i,j), 240 (k,l), 270 K(m,n), and 295 K (o,p). Both sets of data were plotted on the same scale for comparison. The dotted lines represent single exponential decay function utilized to determine the relaxation time T. All error bars represent the standard errors of the mean from two independent measurements.

Source data

Extended Data Fig. 6 Specific heat analysis.

a, Specific heat of TNS obtained from Ref. 8, then modelled with a Debye fitting. b, Fluence-dependent temperature increase ΔT for different initial temperatures Ti. It is observed from the plot that the photoinduced temperature rise is minimal, ruling out a thermal origin of the signal.

Source data

Extended Data Fig. 7 DFT calculation.

Recalculated band structures in the monoclinic phase after displacement of the IR-phonon coordinate along the positive (red dashed line) and negative (dark blue dashed line) directions with respect to the equilibrium structure (black solid line) for a, mode 21, b, mode 22, c, mode 25 and d, mode 26 using the PBE functional. Green ellipses represent the shift in bands. Phonon mode 26 shows the largest renormalization and thus the strongest coupling to the band structure upon displacement along its eigenmode. Insets show the zoomed in profiles of the renormalized band structures. Blue arrows signify the direction of the energy shift.

Extended Data Fig. 8 Evolution of the 4.69 THz mode.

The temperature-dependence of the electron–phonon coupling for 4.69 THz Bu mode and (mode 26) in the a, monoclinic and b, orthorhombic phases using the PBE functional. For the monoclinic phase, the electron–phonon coupling is strong and thus the shift in the bands owing to the displacement of the phonon coordinate along its eigenmode is large. Contrary to this, the band shift almost disappears for the orthorhombic phase. This demonstrates that the electron–phonon coupling is mediated by the low-temperature order parameter.

Extended Data Table 1 IR-active phonon modes near 4.5 THz

Supplementary information

Supplementary Information

Suppmentary Figs, 1–18, refs. 58–60 and sections on phonon squeezing in detail, telation between phonon squeezing and reflectivity enhancement, penetration depth mismatch analysis, thermal effect analysis, possibility of thermal phonon shift as an alternative interpretation, and oossibility of THz emission.

Reporting Summary

Source data

Source Data Fig. 1

Source Data Fig. 1.

Source Data Fig. 2

Source Data Fig. 2.

Source Data Fig. 3

Source Data Fig. 3.

Source Data Extended Data Table. 1

Source Data Extended Data Table. 1.

Source Data Extended Data Fig. 1

Source Data Extended Data Fig. 1.

Source Data Extended Data Fig. 3

Source Data Extended Data Fig. 3.

Source Data Extended Data Fig. 4

Source Data Extended Data Fig. 4.

Source Data Extended Data Fig. 5

Source Data Extended Data Fig. 5.

Source Data Extended Data Fig. 6

Source Data Extended Data Fig. 6.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Haque, S.R.U., Michael, M.H., Zhu, J. et al. Terahertz parametric amplification as a reporter of exciton condensate dynamics. Nat. Mater. 23, 796–802 (2024). https://doi.org/10.1038/s41563-023-01755-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41563-023-01755-2

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing