Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Solution-processable mixed-anion cluster chalcohalide Rb6Re6S8I8 in a light-emitting diode

Abstract

Rhenium chalcohalide cluster compounds are a photoluminescent family of mixed-anion chalcohalide cluster materials. Here we report the new material Rb6Re6S8I8, which crystallizes in the cubic space group Fm\(\bar{3}\)m and contains isolated [Re6S8I6]4− clusters. Rb6Re6S8I8 has a band gap of 2.06(5) eV and an ionization energy of 5.51(3) eV, and exhibits broad photoluminescence (PL) ranging from 1.01 eV to 2.12 eV. The room-temperature PL exhibits a PL quantum yield of 42.7% and a PL lifetime of 77 μs (99 μs at 77 K). Rb6Re6S8I8 is found to be soluble in multiple polar solvents including N,N-dimethylformamide, which enables solution processing of the material into films with thickness under 150 nm. Light-emitting diodes based on films of Rb6Re6S8I8 were fabricated, demonstrating the potential for this family of materials in optoelectronic devices.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Rb6Re6S8I8 crystal structure.
Fig. 2: Rb6Re6S8I8 optical properties.
Fig. 3: Rb6Re6S8I8 thin films.
Fig. 4: Initial Rb6Re6S8I8 LED performance.
Fig. 5: Optimized Rb6Re6S8I8 LED performance.

Similar content being viewed by others

Data availability

All data supporting the findings are provided as figures and accompanying tables in the article and Supplementary Information. The X-ray crystallographic coordinates for the structure reported in this study have been deposited at the Cambridge Crystallographic Data Centre (CCDC) with deposit number 2241320. These data can be obtained free of charge from the CCDC via www.ccdc.cam.ac.uk/data_request/cif. Data files for all figures are available from the corresponding author upon reasonable request.

Code availability

The custom codes used in this work are available upon reasonable request.

References

  1. Chung, I., Lee, B., He, J. Q., Chang, R. P. H. & Kanatzidis, M. G. All-solid-state dye-sensitized solar cells with high efficiency. Nature 485, 486–489 (2012).

    Article  CAS  Google Scholar 

  2. Lee, M. M., Teuscher, J., Miyasaka, T., Murakami, T. N. & Snaith, H. J. Efficient hybrid solar cells based on meso-superstructured organometal halide perovskites. Science 338, 643–647 (2012).

    Article  CAS  Google Scholar 

  3. Tsai, H. H. et al. High-efficiency two-dimensional Ruddlesden–Popper perovskite solar cells. Nature 536, 312–316 (2016).

    Article  CAS  Google Scholar 

  4. Lin, K. B. et al. Perovskite light-emitting diodes with external quantum efficiency exceeding 20 per cent. Nature 562, 245–248 (2018).

    Article  CAS  Google Scholar 

  5. Xiao, Z. G. et al. Efficient perovskite light-emitting diodes featuring nanometre-sized crystallites. Nat. Photon. 11, 108–115 (2017).

    Article  CAS  Google Scholar 

  6. Ghorpade, U. V. et al. Emerging chalcohalide materials for energy applications. Chem. Rev. 123, 327–378 (2023).

    Article  CAS  Google Scholar 

  7. Roth, A. N. et al. Solution-phase synthesis and photoluminescence of quaternary chalcohalide semiconductors. Chem. Mater. 35, 2165–2172 (2023).

    Article  CAS  Google Scholar 

  8. Xiao, J.-R., Yang, S.-H., Feng, F., Xue, H.-G. & Guo, S.-P. A review of the structural chemistry and physical properties of metal chalcogenide halides. Coord. Chem. Rev. 347, 23–47 (2017).

    Article  CAS  Google Scholar 

  9. Islam, S. M. et al. Direct gap semiconductors Pb2BiS2I3, Sn2BiS2I3, and Sn2BiSl5. Chem. Mater. 28, 7332–7343 (2016).

    Article  CAS  Google Scholar 

  10. Gray, T. G., Rudzinski, C. M., Nocera, D. G. & Holm, R. H. Highly emissive hexanuclear rhenium(III) clusters containing the cubic cores [Re6S8]2+ and [Re6Se8]2+. Inorg. Chem. 38, 5932–5933 (1999).

    Article  CAS  Google Scholar 

  11. Gray, T. G., Rudzinski, C. M., Meyer, E. E., Holm, R. H. & Nocera, D. G. Spectroscopic and photophysical properties of hexanuclear rhenium(III) chalcogenide clusters. J. Am. Chem. Soc. 125, 4755–4770 (2003).

    Article  CAS  Google Scholar 

  12. Kitamura, N. et al. Temperature dependent emission of hexarhenium(III) clusters [Re63-S)8X6]4− (X = Cl, Br, and I): analysis by four excited triplet-state sublevels. Inorg. Chem. 44, 6308–6313 (2005).

    Article  CAS  Google Scholar 

  13. Laing, C. C. et al. Photoluminescent Re6Q8I2 (Q = S, Se) semiconducting cluster compounds. Chem. Mater. 33, 5780–5789 (2021).

    Article  CAS  Google Scholar 

  14. Opalovskii, A. A., Fedorov, V. E. & Lobkov, E. U. The reaction of molybdenum, tungsten, and rhenium selenides with gaseous bromine. Russ. J. Inorg. Chem. 16, 790–792 (1971).

    Google Scholar 

  15. Opalovskii, A. A., Fedorov, V. E., Lobkov, E. U. & Erenburg, B. G. New rhenium chalcogenide halides. Russ. J. Inorg. Chem. 16, 1685 (1971).

    Google Scholar 

  16. Batail, P., Ouahab, L., Pénicaud, A., Lenoir, C. & Perrin, A. Preparation of the tetrabutylammonium salt of a rhenium (III) chalcohalide molecular cluster, (C4H9)4NRe6Se5Cl9. Access to the solution-phase chemistry of an analogous molybdenum chalcogenide, examples of electrochemical association with tetrathia(selena)fulvalene-based cationic radicals. C. R. Acad. Sci. II 304, 1111–1116 (1987).

    CAS  Google Scholar 

  17. Long, J. R., Williamson, A. S. & Holm, R. H. Dimensional reduction of Re6Se8Cl2: sheets, chains, and discrete clusters composed of chloride‐terminated [Re6Q8]2+ (Q = S, Se) cores. Angew. Chem. Int. Ed. Engl. 34, 226–229 (1995).

    Article  CAS  Google Scholar 

  18. Willer, M. W., Long, J. R., McLauchlan, C. C. & Holm, R. H. Ligand substitution reactions of [Re6S8Br6]4−: a basis set of Re6S8 clusters for building multicluster assemblies. Inorg. Chem. 37, 328–333 (1998).

    Article  CAS  Google Scholar 

  19. Selby, H. D., Roland, B. K. & Zheng, Z. Ligand-bridged oligomeric and supramolecular arrays of the hexanuclear rhenium selenide clusters—exploratory synthesis, structural characterization, and property investigation. Acc. Chem. Res. 36, 933–944 (2003).

    Article  CAS  Google Scholar 

  20. Shestopalov, M. A. et al. Self-assembly of ambivalent organic/inorganic building blocks containing Re6 metal atom cluster: formation of a luminescent honeycomb, hollow, tubular metal–organic framework. Inorg. Chem. 48, 1482–1489 (2009).

    Article  CAS  Google Scholar 

  21. Pinkard, A., Champsaur, A. M. & Roy, X. Molecular clusters: nanoscale building blocks for solid-state materials. Acc. Chem. Res. 51, 919–929 (2018).

    Article  CAS  Google Scholar 

  22. Satoshi, K., Sayoko, N. & Teiji, C. Catalytic hydrogenation and dehydrogenation over solid-state rhenium sulfide clusters with an octahedral metal framework. Chem. Lett. 36, 1340–1341 (2007).

    Article  Google Scholar 

  23. Kim, Y., Fedorov, V. E. & Kim, S.-J. Novel compounds based on [Re6Q8(L)6]4− (Q = S, Se, Te; L = CN, OH) and their applications. J. Mater. Chem. 19, 7178–7190 (2009).

    Article  CAS  Google Scholar 

  24. Kubeil, M. et al. Sugar-decorated dendritic nanocarriers: encapsulation and release of the octahedral rhenium cluster complex [Re6S8(OH)6]4−. Chem. Asian J. 5, 2507–2514 (2010).

    Article  CAS  Google Scholar 

  25. Bruck, A. M. et al. Reversible electrochemical lithium-ion insertion into the rhenium cluster chalcogenide–halide Re6Se8Cl2. Inorg. Chem. 57, 4812–4815 (2018).

    Article  CAS  Google Scholar 

  26. Choi, B. et al. Two-dimensional hierarchical semiconductor with addressable surfaces. J. Am. Chem. Soc. 140, 9369–9373 (2018).

    Article  CAS  Google Scholar 

  27. Zhong, X. et al. Superatomic two-dimensional semiconductor. Nano Lett. 18, 1483–1488 (2018).

    Article  CAS  Google Scholar 

  28. He, S. et al. Site-selective surface modification of 2D superatomic Re6Se8. J. Am. Chem. Soc. 144, 74–79 (2022).

    Article  CAS  Google Scholar 

  29. Gabriel, J.-C. P., Boubekeur, K., Uriel, S. & Batail, P. Chemistry of hexanuclear rhenium chalcohalide clusters. Chem. Rev. 101, 2037–2066 (2001).

    Article  CAS  Google Scholar 

  30. Fischer, C. et al. Structure and photoelectrochemical properties of semiconducting rhenium cluster chalcogenides: Re6X8Br2 (X = S, Se). J. Alloys Compd. 178, 305–314 (1992).

    Article  CAS  Google Scholar 

  31. Fischer, C., Fiechter, S., Tributsch, H., Reck, G. & Schultz, B. Crystal structure and thermodynamic analysis of the new semiconducting Chevrel phase Re6S8Cl2. Ber. Bunsenges. Phys. Chem. 96, 1652–1658 (1992).

    Article  CAS  Google Scholar 

  32. Speziali, N. L. et al. Single crystal growth, structure and characterization of the octahedral cluster compound Re6Se8Br2. Mater. Res. Bull. 23, 1597–1604 (1988).

    Article  CAS  Google Scholar 

  33. Leduc, L., Perrin, A. & Sergent, M. Structure du dichlorure et octaseleniure d’hexarhenium, Re6Se8Cl2: compose bidimensionnel a clusters octaedriques Re6. Acta Crystallogr. C 39, 1503–1506 (1983).

    Article  Google Scholar 

  34. Pilet, G., Hernandez, O. & Perrin, A. Crystal structure of rhenium caesium sulfobromide, CsRe6S8Br3, the first cluster compound in the Cs–Re–S–Br system exhibiting two types of inter-unit bridges. Z. Kristallogr. New Cryst. Struct. 217, 11–12 (2002).

    Article  CAS  Google Scholar 

  35. Pilet, G. & Perrin, A. New compounds in the cesium sulfobromide rhenium octahedral cluster chemistry: syntheses and crystal structures of Cs4Re6S8Br6 and Cs2Re6S8Br4. Solid State Sci. 6, 109–116 (2004).

    Article  CAS  Google Scholar 

  36. Yarovoi, S. S., Mironov, Y. V., Tkachev, S. V. & Fedorov, V. E. Phase formation in the Re–Se–Br–MBr systems (M = Li, Na, K, Rb, Cs). Russ. J. Inorg. Chem. 54, 299–304 (2009).

    Article  Google Scholar 

  37. Long, J. R., McCarty, L. S. & Holm, R. H. A solid-state route to molecular clusters: access to the solution chemistry of [Re6Q8]2+ (Q = S, Se) core-containing clusters via dimensional reduction. J. Am. Chem. Soc. 118, 4603–4616 (1996).

    Article  CAS  Google Scholar 

  38. Solodovnikov, S. F., Yarovoi, S. S., Mironov, Y. V., Vironets, A. V. & Fedorov, V. E. Unusual disordering of potassium ions in the structures of cluster rhenium thiohalides K3[Re6S7Br7] and K4[Re6S8Cl6]. J. Struct. Chem. 45, 865–873 (2004).

    Article  CAS  Google Scholar 

  39. Jeon, N. J. et al. Solvent engineering for high-performance inorganic–organic hybrid perovskite solar cells. Nat. Mater. 13, 897–903 (2014).

    Article  CAS  Google Scholar 

  40. Nie, W. et al. High-efficiency solution-processed perovskite solar cells with millimeter-scale grains. Science 347, 522–525 (2015).

    Article  CAS  Google Scholar 

  41. Chen, C. et al. Effect of BCP buffer layer on eliminating charge accumulation for high performance of inverted perovskite solar cells. RSC Adv. 7, 35819–35826 (2017).

    Article  CAS  Google Scholar 

  42. Kim, N. et al. Highly efficient vacuum-evaporated CsPbBr3 perovskite light-emitting diodes with an electrical conductivity enhanced polymer-assisted passivation layer. ACS Appl. Mater. Interfaces 13, 37323–37330 (2021).

    Article  CAS  Google Scholar 

  43. DeVries, T. & Rodebush, W. H. The thermal dissociation of iodine and bromine. J. Am. Chem. Soc. 49, 656–666 (1927).

    Article  CAS  Google Scholar 

  44. X-Area v.1.90, X-Red v.1.65.2, X-Shape v.2.21 (STOE, 2020).

  45. Koziskova, J., Hahn, F., Richter, J. & Kožíšek, J. Comparison of different absorption corrections on the model structure of tetrakis(μ-acetato)-diaqua-di-copper(II). Acta Chim. Slov. 9, 136–140 (2016).

    Article  CAS  Google Scholar 

  46. Sheldrick, G. SHELXT—integrated space-group and crystal-structure determination. Acta Crystallogr. A 71, 3–8 (2015).

    Article  Google Scholar 

  47. Sheldrick, G. Crystal structure refinement with SHELXL. Acta Crystallogr. C 71, 3–8 (2015).

    Article  Google Scholar 

  48. Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. OLEX2: a complete structure solution, refinement and analysis program. J. Appl. Crystallogr. 42, 339–341 (2009).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work is supported in part by the National Science Foundation through the MRSEC program (NSF-DMR 1720139) at the Materials Research Center and in part through DMR-2305731. The work made use of the IMSERC Physical Characterization facility at Northwestern University, which has received support from the Soft and Hybrid Nanotechnology Experimental (SHyNE) Resource (NSF ECCS-2025633) and from Northwestern University. It also made use of the EPIC and Keck-II facilities of Northwestern University’s NUANCE Center, which have both received support from the SHyNE Resource (NSF ECCS-2025633), the IIN and Northwestern’s MRSEC programme (NSF DMR-1720139). The work made use of the GIANTFab core facility at Northwestern University. GIANTFab is supported by the Institute for Sustainability and Energy at Northwestern and the Office of the Vice President for Research at Northwestern. Photoemission yield spectroscopy in air measurements were carried out with equipment acquired using ONR grant N00014-18-1-2102. This research used resources of the Advanced Photon Source Beamline 8-ID-E, a US Department of Energy (DOE) Office of Science User Facility operated for the DOE Office of Science by Argonne National Laboratory under contract DE-AC02-06CH113. We acknowledge M. Quintero, D. Chica and R. McClain for productive conversations.

Author information

Authors and Affiliations

Authors

Contributions

C.C.L. developed the concept, performed all material synthesis, performed and analysed X-ray crystallography and characterization measurements, and fabricated both thin films and LED devices in addition to their characterization. D.K., J.P. and B.S. fabricated and characterized thin films and LED devices. J.S., J.H. and C.W. performed theoretical and computational work and identified Raman stretching modes. I.H. carried out low-temperature PL measurements and analysis. J.M.H. carried out grazing-incidence wide-angle scattering measurements and assisted in some thin-film and LED device fabrication. C.C.L. and M.G.K. were the primary writers of the paper and the principal investigators. All authors discussed the results and provided feedback on the paper.

Corresponding author

Correspondence to Mercouri G. Kanatzidis.

Ethics declarations

Competing interests

The authors declare the patent application PCT/US2023/028799.

Peer review

Peer review information

Nature Materials thanks Hiroshi Kageyama, Mahesh P. Suryawanshi and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–24, Tables 1–6 and additional experimental details, crystallographic tables, solubility table, differential thermal analysis, scanning electron microscopy and energy-dispersive spectroscopy, electronic band structure, phonon dispersion, Raman spectra and vibrational stretches, PXRD, film characterization and grazing-incidence wide-angle scattering measurements, and images of material.

Supplementary Data 1

Crystallographic data.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Laing, C.C., Kim, D., Park, J. et al. Solution-processable mixed-anion cluster chalcohalide Rb6Re6S8I8 in a light-emitting diode. Nat. Mater. 23, 230–236 (2024). https://doi.org/10.1038/s41563-023-01740-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41563-023-01740-9

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing