Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Hepatic immune regulation and sex disparities

Abstract

Chronic liver disease is a major cause of morbidity and mortality worldwide. Epidemiology, clinical phenotype and response to therapies for gastrointestinal and liver diseases are commonly different between women and men due to sex-specific hormonal, genetic and immune-related factors. The hepatic immune system has unique regulatory functions that promote the induction of intrahepatic tolerance, which is key for maintaining liver health and homeostasis. In liver diseases, hepatic immune alterations are increasingly recognized as a main cofactor responsible for the development and progression of chronic liver injury and fibrosis. In this Review, we discuss the basic mechanisms of sex disparity in hepatic immune regulation and how these mechanisms influence and modify the development of autoimmune liver diseases, genetic liver diseases, portal hypertension and inflammation in chronic liver disease. Alterations in gut microbiota and their crosstalk with the hepatic immune system might affect the progression of liver disease in a sex-specific manner, creating potential opportunities for novel diagnostic and therapeutic approaches to be evaluated in clinical trials. Finally, we identify and propose areas for future basic, translational and clinical research that will advance our understanding of sex disparities in hepatic immunity and liver disease.

Key points

  • Increasing evidence indicates that biological sex modifies hepatic immune regulation, thereby contributing to hepatic immune outcomes in health and disease.

  • Changes in gut microbiota might substantially affect liver diseases in a sex-specific manner through the regulation of sex hormones, bile acid, lipid and hepatic xenobiotic metabolism.

  • Genetics have revealed few clues to sex disparities in liver disease, but dedicated studies are scarce; only for primary biliary cholangitis has a dedicated chromosome X-wide association study been performed.

  • Incidence, phenotype and disease progression in autoimmune liver diseases vary according to sex: men have an increased risk of disease progression, suboptimal treatment response and hepatobiliary malignancies.

  • Sex influences haemodynamics and portal hypertension in animal models; however, whether this translates into sex-specific responses to treatments lowering portal pressure in individuals with chronic liver disease is unclear.

  • Marked differences in body mass composition exist between sexes, both in health and chronic liver disease, potentially affecting the risk of hepatic decompensation and survival.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Main pathways involved in sexual dimorphism of liver immunity.
Fig. 2: Genome-wide landscape of liver disease associations utilizing data from the GWAS catalogue.
Fig. 3: Sex-effect on body composition abnormalities in end-stage liver disease.

Similar content being viewed by others

Data availability

The publicly available GWAS catalogue referred to in Fig. 2 can be accessed, and the summary statistics contained therein can be downloaded from https://www.ebi.ac.uk/gwas/. For generation of the panels contained in Fig. 2, two publicly available tools were used: PhenoGram (https://ritchielab.org/software/phenogram-downloads) and the resource at https://bioinformatics.psb.ugent.be/webtools/Venn/.

References

  1. Burra, P., Zanetto, A. & Germani, G. Sex bias in clinical trials in gastroenterology and hepatology. Nat. Rev. Gastroenterol. Hepatol. 19, 413–414 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  2. Mauvais-Jarvis, F. et al. Sex and gender: modifiers of health, disease, and medicine. Lancet 396, 565–582 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  3. Bizzaro, D. et al. Influence of sex in alcohol-related liver disease: pre-clinical and clinical settings. United Eur. Gastroenterol. J. 11, 218–227 (2023).

    Article  CAS  Google Scholar 

  4. Burra, P. et al. Clinical impact of sexual dimorphism in non-alcoholic fatty liver disease (NAFLD) and non-alcoholic steatohepatitis (NASH). Liver Int. 41, 1713–1733 (2021).

    Article  PubMed  Google Scholar 

  5. Goodman, W. A., Erkkila, I. P. & Pizarro, T. T. Sex matters: impact on pathogenesis, presentation and treatment of inflammatory bowel disease. Nat. Rev. Gastroenterol. Hepatol. 17, 740–754 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  6. Guarino, M. et al. Sarcopenia in chronic advanced liver diseases: a sex-oriented analysis of the literature. Dig. Liver Dis. 54, 997–1006 (2022).

    Article  PubMed  Google Scholar 

  7. Toniutto, P. et al. Role of sex in liver tumor occurrence and clinical outcomes: a comprehensive review. Hepatology 79, 1141–1157 (2023).

    Article  PubMed  Google Scholar 

  8. Zanetto, A. et al. Vascular liver diseases: a sex-oriented analysis of the literature. Dig. Liver Dis. 55, 178–186 (2023).

    Article  PubMed  Google Scholar 

  9. Lefebvre, P. & Staels, B. Hepatic sexual dimorphism – implications for non-alcoholic fatty liver disease. Nat. Rev. Endocrinol. 17, 662–670 (2021).

    Article  PubMed  Google Scholar 

  10. Knolle, P. A. & Thimme, R. Hepatic immune regulation and its involvement in viral hepatitis infection. Gastroenterology 146, 1193–1207 (2014).

    Article  CAS  PubMed  Google Scholar 

  11. Jenne, C. N. & Kubes, P. Immune surveillance by the liver. Nat. Immunol. 14, 996–1006 (2013).

    Article  CAS  PubMed  Google Scholar 

  12. Doherty, D. G. Immunity, tolerance and autoimmunity in the liver: a comprehensive review. J. Autoimmun. 66, 60–75 (2016).

    Article  CAS  PubMed  Google Scholar 

  13. Crispe, I. N. The liver as a lymphoid organ. Annu. Rev. Immunol. 27, 147–163 (2009).

    Article  CAS  PubMed  Google Scholar 

  14. Gao, B., Jeong, W. I. & Tian, Z. Liver: an organ with predominant innate immunity. Hepatology 47, 729–736 (2008).

    Article  CAS  PubMed  Google Scholar 

  15. Racanelli, V. & Rehermann, B. The liver as an immunological organ. Hepatology 43, S54–S62 (2006).

    Article  CAS  PubMed  Google Scholar 

  16. Tiegs, G. & Lohse, A. W. Immune tolerance: what is unique about the liver. J. Autoimmun. 34, 1–6 (2010).

    Article  CAS  PubMed  Google Scholar 

  17. Costa, D. et al. Systemic inflammation increases across distinct stages of advanced chronic liver disease and correlates with decompensation and mortality. J. Hepatol. 74, 819–828 (2021).

    Article  CAS  PubMed  Google Scholar 

  18. Liberal, R., Grant, C. R., Mieli-Vergani, G. & Vergani, D. Autoimmune hepatitis: a comprehensive review. J. Autoimmun. 41, 126–139 (2013).

    Article  CAS  PubMed  Google Scholar 

  19. Shin, E. C., Sung, P. S. & Park, S. H. Immune responses and immunopathology in acute and chronic viral hepatitis. Nat. Rev. Immunol. 16, 509–523 (2016).

    Article  CAS  PubMed  Google Scholar 

  20. Zanetto, A. et al. Severity of systemic inflammation is the main predictor of ACLF and bleeding in individuals with acutely decompensated cirrhosis. J. Hepatol. 78, 301–311 (2023).

    Article  CAS  PubMed  Google Scholar 

  21. Zanetto, A. et al. Toward a more precise prognostic stratification in acute decompensation of cirrhosis: the Padua model 2.0. United Eur. Gastroenterol. J. 11, 815–824 (2023).

    Article  CAS  Google Scholar 

  22. Zhang, S., Lu, S. & Li, Z. Extrahepatic factors in hepatic immune regulation. Front. Immunol. 13, 941721 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Meijnikman, A. S. et al. Microbiome-derived ethanol in nonalcoholic fatty liver disease. Nat. Med. 28, 2100–2106 (2022).

    Article  CAS  PubMed  Google Scholar 

  24. Schwabe, R. F. & Greten, T. F. Gut microbiome in HCC – mechanisms, diagnosis and therapy. J. Hepatol. 72, 230–238 (2020).

    Article  CAS  PubMed  Google Scholar 

  25. Yin, Y. et al. Gut microbiota promote liver regeneration through hepatic membrane phospholipid biosynthesis. J. Hepatol. 78, 820–835 (2023).

    Article  CAS  PubMed  Google Scholar 

  26. Karlsen, T. H. et al. The EASL-Lancet Commission on liver health in Europe: prevention, case-finding, and early diagnosis to reduce liver-related mortality. Lancet 403, 1522–1524 (2024).

    Article  PubMed  Google Scholar 

  27. Karlsen, T. H. et al. The EASL-Lancet Liver Commission: protecting the next generation of Europeans against liver disease complications and premature mortality. Lancet 399, 61–116 (2022).

    Article  PubMed  Google Scholar 

  28. Heidari, S. et al. WHO’s adoption of SAGER guidelines and GATHER: setting standards for better science with sex and gender in mind. Lancet 403, 226–228 (2024).

    Article  PubMed  Google Scholar 

  29. Heymann, F. & Tacke, F. Immunology in the liver – from homeostasis to disease. Nat. Rev. Gastroenterol. Hepatol. 13, 88–110 (2016).

    Article  CAS  PubMed  Google Scholar 

  30. Kasarinaite, A., Sinton, M., Saunders, P. T. K. & Hay, D. C. The influence of sex hormones in liver function and disease. Cells 12, 1604 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Della Torre, S. & Maggi, A. Sex differences: a resultant of an evolutionary pressure. Cell Metab. 25, 499–505 (2017).

    Article  PubMed  Google Scholar 

  32. Rinella, M. E. et al. A multisociety Delphi consensus statement on new fatty liver disease nomenclature. J. Hepatol. 79, 1542–1556 (2023).

    Article  CAS  PubMed  Google Scholar 

  33. Catala-Senent, J. F. et al. Hepatic steatosis and steatohepatitis: a functional meta-analysis of sex-based differences in transcriptomic studies. Biol. Sex. Differ. 12, 29 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Giles, D. A. et al. Thermoneutral housing exacerbates nonalcoholic fatty liver disease in mice and allows for sex-independent disease modeling. Nat. Med. 23, 829–838 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Sommars, M. A. et al. Dynamic repression by BCL6 controls the genome-wide liver response to fasting and steatosis. Elife 8, e43922 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  36. Nikkanen, J. et al. An evolutionary trade-off between host immunity and metabolism drives fatty liver in male mice. Science 378, 290–295 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Waxman, D. J. & Kineman, R. D. Sex matters in liver fat regulation. Science 378, 252–253 (2022).

    Article  CAS  PubMed  Google Scholar 

  38. Roelfsema, F. & Veldhuis, J. D. Growth hormone dynamics in healthy adults are related to age and sex and strongly dependent on body mass index. Neuroendocrinology 103, 335–344 (2016).

    Article  CAS  PubMed  Google Scholar 

  39. Guillaume, M. et al. Selective liver estrogen receptor α modulation prevents steatosis, diabetes, and obesity through the anorectic growth differentiation factor 15 hepatokine in mice. Hepatol. Commun. 3, 908–924 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Oliva, M. et al. The impact of sex on gene expression across human tissues. Science 369, eaba3066 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Lin, H. Y. et al. Increased hepatic steatosis and insulin resistance in mice lacking hepatic androgen receptor. Hepatology 47, 1924–1935 (2008).

    Article  CAS  PubMed  Google Scholar 

  42. Lee, H. S. et al. The effect of testosterone replacement therapy on nonalcoholic fatty liver disease in older hypogonadal men. J. Clin. Endocrinol. Metab. 109, e757–e764 (2024).

    Article  PubMed  Google Scholar 

  43. Sarkar, M. et al. Low testosterone is associated with nonalcoholic steatohepatitis and fibrosis severity in men. Clin. Gastroenterol. Hepatol. 19, 400–402.e2 (2021).

    Article  CAS  PubMed  Google Scholar 

  44. Chen, K. W., Chen, Y. S., Chen, P. J. & Yeh, S. H. Androgen receptor functions in pericentral hepatocytes to decrease gluconeogenesis and avoid hyperglycemia and obesity in male mice. Metabolism 135, 155269 (2022).

    Article  CAS  PubMed  Google Scholar 

  45. Wu, X. N. et al. Sex-determining region Y gene promotes liver fibrosis and accounts for sexual dimorphism in its pathophysiology. J. Hepatol. 80, 928–940 (2024).

    Article  CAS  PubMed  Google Scholar 

  46. Dong, J. et al. SRY is a key mediator of sexual dimorphism in hepatic ischemia/reperfusion injury. Ann. Surg. 276, 345–356 (2022).

    Article  PubMed  Google Scholar 

  47. Liu, C. et al. Activation of SRY accounts for male-specific hepatocarcinogenesis: implication in gender disparity of hepatocellular carcinoma. Cancer Lett. 410, 20–31 (2017).

    Article  CAS  PubMed  Google Scholar 

  48. Jaillon, S., Berthenet, K. & Garlanda, C. Sexual dimorphism in innate immunity. Clin. Rev. Allergy Immunol. 56, 308–321 (2019).

    Article  CAS  PubMed  Google Scholar 

  49. Shepherd, R., Cheung, A. S., Pang, K., Saffery, R. & Novakovic, B. Sexual dimorphism in innate immunity: the role of sex hormones and epigenetics. Front. Immunol. 11, 604000 (2020).

    Article  CAS  PubMed  Google Scholar 

  50. Gal-Oz, S. T. et al. ImmGen report: sexual dimorphism in the immune system transcriptome. Nat. Commun. 10, 4295 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  51. Hammerich, L. & Tacke, F. Hepatic inflammatory responses in liver fibrosis. Nat. Rev. Gastroenterol. Hepatol. 20, 633–646 (2023).

    Article  CAS  PubMed  Google Scholar 

  52. Peiseler, M. et al. Immune mechanisms linking metabolic injury to inflammation and fibrosis in fatty liver disease – novel insights into cellular communication circuits. J. Hepatol. 77, 1136–1160 (2022).

    Article  CAS  PubMed  Google Scholar 

  53. Saviano, A., Henderson, N. C. & Baumert, T. F. Single-cell genomics and spatial transcriptomics: discovery of novel cell states and cellular interactions in liver physiology and disease biology. J. Hepatol. 73, 1219–1230 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Ministrini, S., Montecucco, F., Sahebkar, A. & Carbone, F. Macrophages in the pathophysiology of NAFLD: the role of sex differences. Eur. J. Clin. Invest. 50, e13236 (2020).

    Article  CAS  PubMed  Google Scholar 

  55. Han, Y. H., Choi, H., Kim, H. J. & Lee, M. O. Chemotactic cytokines secreted from Kupffer cells contribute to the sex-dependent susceptibility to non-alcoholic fatty liver diseases in mice. Life Sci. 306, 120846 (2022).

    Article  CAS  PubMed  Google Scholar 

  56. Naugler, W. E. et al. Gender disparity in liver cancer due to sex differences in MyD88-dependent IL-6 production. Science 317, 121–124 (2007).

    Article  CAS  PubMed  Google Scholar 

  57. Becerra-Diaz, M., Strickland, A. B., Keselman, A. & Heller, N. M. Androgen and androgen receptor as enhancers of M2 macrophage polarization in allergic lung inflammation. J. Immunol. 201, 2923–2933 (2018).

    Article  CAS  PubMed  Google Scholar 

  58. Bizzaro, D. et al. Sex-dependent differences in inflammatory responses during liver regeneration in a murine model of acute liver injury. Clin. Sci. 132, 255–272 (2018).

    Article  CAS  Google Scholar 

  59. Chen, K. E., Lainez, N. M. & Coss, D. Sex differences in macrophage responses to obesity-mediated changes determine migratory and inflammatory traits. J. Immunol. 206, 141–153 (2021).

    Article  CAS  PubMed  Google Scholar 

  60. Petrescu, A. D. et al. Glucocorticoids cause gender-dependent reversal of hepatic fibrosis in the MDR2-knockout mouse model. Int. J. Mol. Sci. 18, 2389 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  61. Krishnan, A. et al. tumor necrosis factor-related apoptosis-inducing ligand receptor deficiency promotes the ductular reaction, macrophage accumulation, and hepatic fibrosis in the Abcb4−/− mouse. Am. J. Pathol. 190, 1284–1297 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Lotter, H., Jacobs, T., Gaworski, I. & Tannich, E. Sexual dimorphism in the control of amebic liver abscess in a mouse model of disease. Infect. Immun. 74, 118–124 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Lotter, H. et al. Testosterone increases susceptibility to amebic liver abscess in mice and mediates inhibition of IFNγ secretion in natural killer T cells. PLoS ONE 8, e55694 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Sellau, J. et al. Androgens predispose males to monocyte-mediated immunopathology by inducing the expression of leukocyte recruitment factor CXCL1. Nat. Commun. 11, 3459 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  65. Helk, E. et al. TNFα-mediated liver destruction by Kupffer cells and Ly6Chi monocytes during Entamoeba histolytica infection. PLoS Pathog. 9, e1003096 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Er-Lukowiak, M. et al. Testosterone affects type I/type II interferon response of neutrophils during hepatic amebiasis. Front. Immunol. 14, 1279245 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Groneberg, M. et al. HIF-1α modulates sex-specific Th17/Treg responses during hepatic amoebiasis. J. Hepatol. 76, 160–173 (2022).

    Article  CAS  PubMed  Google Scholar 

  68. Liedtke, C. et al. Experimental liver fibrosis research: update on animal models, legal issues and translational aspects. Fibrogenes. Tissue Repair. 6, 19 (2013).

    Article  Google Scholar 

  69. Gallage, S. et al. A researcher’s guide to preclinical mouse NASH models. Nat. Metab. 4, 1632–1649 (2022).

    Article  CAS  PubMed  Google Scholar 

  70. Cuno-Gomiz, C. et al. Sex-based differences in natural killer T cell-mediated protection against diet-induced steatohepatitis in Balb/c mice. Biol. Sex. Differ. 14, 85 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Osonoi, S. & Takebe, T. Organoid-guided precision hepatology for metabolic liver disease. J. Hepatol. 80, 805–821 (2024).

    Article  PubMed  Google Scholar 

  72. Rezvani, M., Vallier, L. & Guillot, A. Modeling nonalcoholic fatty liver disease in the dish using human-specific platforms: strategies and limitations. Cell Mol. Gastroenterol. Hepatol. 15, 1135–1145 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Trivedi, P. J., Hirschfield, G. M., Adams, D. H. & Vierling, J. M. Immunopathogenesis of primary biliary cholangitis, primary sclerosing cholangitis and autoimmune hepatitis: themes and concepts. Gastroenterology 166, 995–1019 (2024).

    Article  CAS  PubMed  Google Scholar 

  74. Papenfuss, T. L. et al. Estriol generates tolerogenic dendritic cells in vivo that protect against autoimmunity. J. Immunol. 186, 3346–3355 (2011).

    Article  CAS  PubMed  Google Scholar 

  75. Seillet, C. et al. Estradiol promotes functional responses in inflammatory and steady-state dendritic cells through differential requirement for activation function-1 of estrogen receptor α. J. Immunol. 190, 5459–5470 (2013).

    Article  CAS  PubMed  Google Scholar 

  76. Henze, L., Schwinge, D. & Schramm, C. The effects of androgens on T cells: clues to female predominance in autoimmune liver diseases? Front. Immunol. 11, 1567 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Meester, I. et al. SeXY chromosomes and the immune system: reflections after a comparative study. Biol. Sex. Differ. 11, 3 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Zhang, X., Chen, B. D., Zhao, L. D. & Li, H. The gut microbiota: emerging evidence in autoimmune diseases. Trends Mol. Med. 26, 862–873 (2020).

    Article  CAS  PubMed  Google Scholar 

  79. Werner, M. et al. Epidemiology and the initial presentation of autoimmune hepatitis in Sweden: a nationwide study. Scand. J. Gastroenterol. 43, 1232–1240 (2008).

    Article  PubMed  Google Scholar 

  80. Gronbaek, L. et al. Incidence, prevalence and mortality of autoimmune hepatitis in England 1997-2015. A population-based cohort study. Liver Int. 40, 1634–1644 (2020).

    Article  PubMed  Google Scholar 

  81. Webb, G. J., Ryan, R. P., Marshall, T. P. & Hirschfield, G. M. The epidemiology of UK autoimmune liver disease varies with geographic latitude. Clin. Gastroenterol. Hepatol. 19, 2587–2596 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  82. Hahn, J. W. et al. Global incidence and prevalence of autoimmune hepatitis, 1970-2022: a systematic review and meta-analysis. EClinicalMedicine 65, 102280 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  83. Groribæk, L., Vilstrup, H. & Jepsen, P. Autoimmune hepatitis in Denmark: incidence, prevalence, prognosis, and causes of death. A nationwide registry-based cohort study. J. Hepatol. 60, 612–617 (2014).

    Article  Google Scholar 

  84. Al-Chalabi, T., Underhill, J. A., Portmann, B. C., McFarlane, I. G. & Heneghan, M. A. Impact of gender on the long-term outcome and survival of patients with autoimmune hepatitis. J. Hepatol. 48, 140–147 (2008).

    Article  CAS  PubMed  Google Scholar 

  85. Donaldson, P. T. et al. Susceptibility to autoimmune chronic active hepatitis: human leukocyte antigens DR4 and A1-B8-DR3 are independent risk factors. Hepatology 13, 701–706 (1991).

    Article  CAS  PubMed  Google Scholar 

  86. Plagiannakos, C. P. et al. Treatment response and clinical event-free survival in autoimmune hepatitis: a Canadian multicentre cohort study. J. Hepatol. 81, 227–237 (2024).

    Article  PubMed  Google Scholar 

  87. Slooter, C. D. et al. Lack of complete biochemical response in autoimmune hepatitis leads to adverse outcome: first report of the IAIHG retrospective registry. Hepatology 79, 538–550 (2024).

    PubMed  Google Scholar 

  88. Montano-Loza, A. J., Carpenter, H. A. & Czaja, A. J. Predictive factors for hepatocellular carcinoma in type 1 autoimmune hepatitis. Am. J. Gastroenterol. 103, 1944–1951 (2008).

    Article  CAS  PubMed  Google Scholar 

  89. Yan, L. J. et al. Sex and regional disparities in incidence of hepatocellular carcinoma in autoimmune hepatitis: a systematic review and meta-analysis. Hepatol. Int. 15, 1413–1420 (2021).

    Article  PubMed  Google Scholar 

  90. Colapietro, F. et al. Incidence and predictors of hepatocellular carcinoma in patients with autoimmune hepatitis. J. Hepatol. 80, 53–61 (2024).

    Article  PubMed  Google Scholar 

  91. Terrabuio, D. R. B., Abrantes-Lemos, C. P., Carrilho, F. J. & Cançado, E. L. R. Follow-up of pregnant women with autoimmune hepatitis. J. Clin. Gastroenterol. 43, 350–356 (2009).

    Article  PubMed  Google Scholar 

  92. Trivedi, P. J. & Hirschfield, G. M. Recent advances in clinical practice: epidemiology of autoimmune liver diseases. Gut 70, 1989–2003 (2021).

    Article  PubMed  Google Scholar 

  93. McNally, R. J., James, P. W., Ducker, S., Norman, P. D. & James, O. F. No rise in incidence but geographical heterogeneity in the occurrence of primary biliary cirrhosis in North East England. Am. J. Epidemiol. 179, 492–498 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  94. Lleo, A. et al. Evolving trends in female to male incidence and male mortality of primary biliary cholangitis. Sci. Rep. 6, 25936 (2016).

    Article  Google Scholar 

  95. Lv, T. et al. Regional variation and temporal trend of primary biliary cholangitis epidemiology: a systematic review and meta-analysis. J. Gastroenterol. Hepatol. 36, 1423–1434 (2021).

    Article  PubMed  Google Scholar 

  96. Hirschfield, G. M. et al. EASL Clinical Practice Guidelines: the diagnosis and management of patients with primary biliary cholangitis. J. Hepatol. 67, 145–172 (2017).

    Article  Google Scholar 

  97. Smyk, D. S. et al. Sex differences associated with primary biliary cirrhosis. Clin. Dev. Immunol. 2012, 610504 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  98. Carbone, M. et al. Sex and age are determinants of the clinical phenotype of primary biliary cirrhosis and response to ursodeoxycholic acid. Gastroenterology 144, 560–569.e7 (2013).

    Article  CAS  PubMed  Google Scholar 

  99. Chen, S. et al. Prognosis of 732 ursodeoxycholic acid-treated patients with primary biliary cholangitis: a single center follow-up study from China. J. Gastroenterol. Hepatol. 34, 1236–1241 (2019).

    Article  CAS  PubMed  Google Scholar 

  100. Cheung, A. C. et al. Effects of age and sex of response to ursodeoxycholic acid and transplant-free survival in patients with primary biliary cholangitis. Clin. Gastroenterol. Hepatol. 17, 2076–2084.e2 (2019).

    Article  CAS  PubMed  Google Scholar 

  101. Trivedi, P. J. et al. Stratification of hepatocellular carcinoma risk in primary biliary cirrhosis: a multicentre international study. Gut 65, 321–329 (2016).

    Article  PubMed  Google Scholar 

  102. Rong, G. H. et al. Incidence and risk factors for hepatocellular carcinoma in primary biliary cirrhosis. Clin. Rev. Allerg. Immunol. 48, 132–141 (2015).

    Article  CAS  Google Scholar 

  103. Roberts, S. B. et al. Ethnicity, disease severity, and survival in Canadian patients with primary biliary cholangitis. Hepatology 76, 303–316 (2022).

    Article  CAS  PubMed  Google Scholar 

  104. Boonstra, K. et al. Population-based epidemiology, malignancy risk, and outcome of primary sclerosing cholangitis. Hepatology 58, 2045–2055 (2013).

    Article  CAS  PubMed  Google Scholar 

  105. Trivedi, P. J. et al. Effects of primary sclerosing cholangitis on risks of cancer and death in people with inflammatory bowel disease, based on sex, race, and age. Gastroenterology 159, 915–928 (2020).

    Article  PubMed  Google Scholar 

  106. European Association for the Study of the Liver EASL Clinical Practice Guidelines on sclerosing cholangitis. J. Hepatol. 77, 761–806 (2022).

    Article  Google Scholar 

  107. Karlsen, T. H., Folseraas, T., Thorburn, D. & Vesterhus, M. Primary sclerosing cholangitis – a comprehensive review. J. Hepatol. 67, 1298–1323 (2017).

    Article  PubMed  Google Scholar 

  108. Lunder, A. K. et al. Prevalence of sclerosing cholangitis detected by magnetic resonance cholangiography in patients with long-term inflammatory bowel disease. Gastroenterology 151, 660–669.e4 (2016).

    Article  PubMed  Google Scholar 

  109. Weismuller, T. J. et al. Patient age, sex, and inflammatory bowel disease phenotype associate with course of primary sclerosing cholangitis. Gastroenterology 152, 1975–1984.e8 (2017).

    Article  PubMed  Google Scholar 

  110. Toy, E., Balasubramanian, S., Selmi, C., Li, C. S. & Bowlus, C. L. The prevalence, incidence and natural history of primary sclerosing cholangitis in an ethnically diverse population. BMC Gastroenterol. 11, 83 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  111. Barberio, B. et al. Prevalence of primary sclerosing cholangitis in patients with inflammatory bowel disease: a systematic review and meta-analysis. Gastroenterology 161, 1865–1877 (2021).

    Article  CAS  PubMed  Google Scholar 

  112. Rupp, C. et al. Impact of age at diagnosis on disease progression in patients with primary sclerosing cholangitis. United Eur. Gastroenterol. J. 6, 255–262 (2018).

    Article  Google Scholar 

  113. Sinha, T. et al. Analysis of 1135 gut metagenomes identifies sex-specific resistome profiles. Gut Microbes 10, 358–366 (2019).

    Article  CAS  PubMed  Google Scholar 

  114. Hsu, C. L. & Schnabl, B. The gut-liver axis and gut microbiota in health and liver disease. Nat. Rev. Microbiol. 21, 719–733 (2023).

    Article  CAS  PubMed  Google Scholar 

  115. Saboo, K. et al. Sex is associated with differences in gut microbial composition and function in hepatic encephalopathy. J. Hepatol. 74, 80–88 (2021).

    Article  CAS  PubMed  Google Scholar 

  116. Markle, J. G. et al. Sex differences in the gut microbiome drive hormone-dependent regulation of autoimmunity. Science 339, 1084–1088 (2013).

    Article  CAS  PubMed  Google Scholar 

  117. Collden, H. et al. The gut microbiota is a major regulator of androgen metabolism in intestinal contents. Am. J. Physiol. Endocrinol. Metab. 317, E1182–E1192 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Cross, T. L., Kasahara, K. & Rey, F. E. Sexual dimorphism of cardiometabolic dysfunction: gut microbiome in the play? Mol. Metab. 15, 70–81 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Collins, S. L., Stine, J. G., Bisanz, J. E., Okafor, C. D. & Patterson, A. D. Bile acids and the gut microbiota: metabolic interactions and impacts on disease. Nat. Rev. Microbiol. 21, 236–247 (2023).

    Article  CAS  PubMed  Google Scholar 

  120. Bennion, L. J. et al. Sex differences in the size of bile acid pools. Metabolism 27, 961–969 (1978).

    Article  CAS  PubMed  Google Scholar 

  121. Xie, G. et al. Profiling of serum bile acids in a healthy Chinese population using UPLC-MS/MS. J. Proteome Res. 14, 850–859 (2015).

    Article  CAS  PubMed  Google Scholar 

  122. Baars, A. et al. Sex differences in lipid metabolism are affected by presence of the gut microbiota. Sci. Rep. 8, 13426 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  123. Xie, G. et al. Sex-dependent effects on gut microbiota regulate hepatic carcinogenic outcomes. Sci. Rep. 7, 45232 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Wankhade, U. D. et al. Maternal high-fat diet programs offspring liver steatosis in a sexually dimorphic manner in association with changes in gut microbial ecology in mice. Sci. Rep. 8, 16502 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  125. Paik, J. M. et al. The burden of nonalcoholic fatty liver disease (NAFLD) is rapidly growing in every region of the world from 1990 to 2019. Hepatol. Commun. 7, e0251 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  126. Zanetto, A. et al. New indications for liver transplantation. J. Clin. Med. 10, 3867 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Bjorkholm, B. et al. Intestinal microbiota regulate xenobiotic metabolism in the liver. PLoS ONE 4, e6958 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  128. Chen, P. et al. Microbiota protects mice against acute alcohol-induced liver injury. Alcohol. Clin. Exp. Res. 39, 2313–2323 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Mazagova, M. et al. Commensal microbiota is hepatoprotective and prevents liver fibrosis in mice. FASEB J. 29, 1043–1055 (2015).

    Article  CAS  PubMed  Google Scholar 

  130. Weger, B. D. et al. The mouse microbiome is required for sex-specific diurnal rhythms of gene expression and metabolism. Cell Metab. 29, 362–382.e8 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Jourova, L. et al. Gut microbiome alters the activity of liver cytochromes p450 in mice with sex-dependent differences. Front. Pharmacol. 11, 01303 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Fu, C. et al. Sex different effect of antibiotic and probiotic treatment on intestinal microbiota composition in chemically induced liver injury rats. Genomics 115, 110647 (2023).

    Article  CAS  PubMed  Google Scholar 

  133. Cirulli, E. T. et al. A missense variant in PTPN22 is a risk factor for drug-induced liver injury. Gastroenterology 156, 1707–1716.e2 (2019).

    Article  CAS  PubMed  Google Scholar 

  134. Daly, A. K. Genetics of drug-induced liver injury: current knowledge and future prospects. Clin. Transl. Sci. 16, 37–42 (2023).

    Article  CAS  PubMed  Google Scholar 

  135. Ellinghaus, D. How genetic risk contributes to autoimmune liver disease. Semin. Immunopathol. 44, 397–410 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Eslam, M., Valenti, L. & Romeo, S. Genetics and epigenetics of NAFLD and NASH: clinical impact. J. Hepatol. 68, 268–279 (2018).

    Article  CAS  PubMed  Google Scholar 

  137. Karlsen, T. H., Lammert, F. & Thompson, R. J. Genetics of liver disease: from pathophysiology to clinical practice. J. Hepatol. 62, S6–S14 (2015).

    Article  CAS  PubMed  Google Scholar 

  138. Trepo, E. & Valenti, L. Update on NAFLD genetics: from new variants to the clinic. J. Hepatol. 72, 1196–1209 (2020).

    Article  CAS  PubMed  Google Scholar 

  139. Gerussi, A., Cristoferi, L., Carbone, M., Asselta, R. & Invernizzi, P. The immunobiology of female predominance in primary biliary cholangitis. J. Autoimmun. 95, 124–132 (2018).

    Article  PubMed  Google Scholar 

  140. Hirschfield, G. M., Karlsen, T. H., Lindor, K. D. & Adams, D. H. Primary sclerosing cholangitis. Lancet 382, 1587–1599 (2013).

    Article  PubMed  Google Scholar 

  141. Cooper, K. M., Delk, M., Devuni, D. & Sarkar, M. Sex differences in chronic liver disease and benign liver lesions. JHEP Rep. 5, 100870 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  142. Dixon, P. H. et al. GWAS meta-analysis of intrahepatic cholestasis of pregnancy implicates multiple hepatic genes and regulatory elements. Nat. Commun. 13, 4840 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Dixon, P. H. et al. A comprehensive analysis of common genetic variation around six candidate loci for intrahepatic cholestasis of pregnancy. Am. J. Gastroenterol. 109, 76–84 (2014).

    Article  CAS  PubMed  Google Scholar 

  144. Adams, P. C., Jeffrey, G. & Ryan, J. Haemochromatosis. Lancet 401, 1811–1821 (2023).

    Article  CAS  PubMed  Google Scholar 

  145. Feder, J. N. et al. A novel MHC class I-like gene is mutated in patients with hereditary haemochromatosis. Nat. Genet. 13, 399–408 (1996).

    Article  CAS  PubMed  Google Scholar 

  146. Girelli, D. et al. Clinical and pathologic findings in hemochromatosis type 3 due to a novel mutation in transferrin receptor 2 gene. Gastroenterology 122, 1295–1302 (2002).

    Article  CAS  PubMed  Google Scholar 

  147. Kato, J. et al. A mutation, in the iron-responsive element of H ferritin mRNA, causing autosomal dominant iron overload. Am. J. Hum. Genet. 69, 191–197 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Montosi, G. et al. Autosomal-dominant hemochromatosis is associated with a mutation in the ferroportin (SLC11A3) gene. J. Clin. Invest. 108, 619–623 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Njajou, O. T. et al. A mutation in SLC11A3 is associated with autosomal dominant hemochromatosis. Nat. Genet. 28, 213–214 (2001).

    Article  CAS  PubMed  Google Scholar 

  150. Papanikolaou, G. et al. Mutations in HFE2 cause iron overload in chromosome 1q-linked juvenile hemochromatosis. Nat. Genet. 36, 77–82 (2004).

    Article  CAS  PubMed  Google Scholar 

  151. Roetto, A. et al. Mutant antimicrobial peptide hepcidin is associated with severe juvenile hemochromatosis. Nat. Genet. 33, 21–22 (2003).

    Article  CAS  PubMed  Google Scholar 

  152. Risch, N. Haemochromatosis, HFE and genetic complexity. Nat. Genet. 17, 375–376 (1997).

    Article  CAS  PubMed  Google Scholar 

  153. Anderson, G. J. & Bardou-Jacquet, E. Revisiting hemochromatosis: genetic vs. phenotypic manifestations. Ann. Transl. Med. 9, 731 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Bell, S. et al. A genome-wide meta-analysis yields 46 new loci associating with biomarkers of iron homeostasis. Commun. Biol. 4, 156 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. Abdellaoui, A., Yengo, L., Verweij, K. J. H. & Visscher, P. M. 15 years of GWAS discovery: realizing the promise. Am. J. Hum. Genet. 110, 179–194 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  156. Crouch, D. J. M. & Bodmer, W. F. Polygenic inheritance, GWAS, polygenic risk scores, and the search for functional variants. Proc. Natl Acad. Sci. USA 117, 18924–18933 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. Mathieson, I. The omnigenic model and polygenic prediction of complex traits. Am. J. Hum. Genet. 108, 1558–1563 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. Wainschtein, P. et al. Assessing the contribution of rare variants to complex trait heritability from whole-genome sequence data. Nat. Genet. 54, 263–273 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. Daly, A. K. et al. HLA-B*5701 genotype is a major determinant of drug-induced liver injury due to flucloxacillin. Nat. Genet. 41, 816–819 (2009).

    Article  CAS  PubMed  Google Scholar 

  160. Lucena, M. I. et al. Susceptibility to amoxicillin-clavulanate-induced liver injury is influenced by multiple HLA class I and II alleles. Gastroenterology 141, 338–347 (2011).

    Article  CAS  PubMed  Google Scholar 

  161. Nicoletti, P. et al. Association of liver injury from specific drugs, or groups of drugs, with polymorphisms in HLA and other genes in a genome-wide association study. Gastroenterology 152, 1078–1089 (2017).

    Article  CAS  PubMed  Google Scholar 

  162. Singer, J. B. et al. A genome-wide study identifies HLA alleles associated with lumiracoxib-related liver injury. Nat. Genet. 42, 711–714 (2010).

    Article  CAS  PubMed  Google Scholar 

  163. Chen, Y. et al. Genome-wide association meta-analysis identifies 17 loci associated with nonalcoholic fatty liver disease. Nat. Genet. 55, 1640–1650 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  164. Romeo, S. et al. Genetic variation in PNPLA3 confers susceptibility to nonalcoholic fatty liver disease. Nat. Genet. 40, 1461–1465 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  165. Anstee, Q. M. et al. Genome-wide association study of non-alcoholic fatty liver and steatohepatitis in a histologically characterised cohort. J. Hepatol. 73, 505–515 (2020).

    Article  CAS  PubMed  Google Scholar 

  166. Valenti, L., Dongiovanni, P., Ginanni Corradini, S., Burza, M. A. & Romeo, S. PNPLA3 I148M variant and hepatocellular carcinoma: a common genetic variant for a rare disease. Dig. Liver Dis. 45, 619–624 (2013).

    Article  CAS  PubMed  Google Scholar 

  167. Chung, B. K. & Karlsen, T. H. Genetic discoveries highlight environmental factors as key drivers of liver disease. Dig. Dis. 35, 323–333 (2017).

    Article  PubMed  Google Scholar 

  168. Choi, S. W., Mak, T. S. & O’Reilly, P. F. Tutorial: a guide to performing polygenic risk score analyses. Nat. Protoc. 15, 2759–2772 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  169. Ji, S. G. et al. Genome-wide association study of primary sclerosing cholangitis identifies new risk loci and quantifies the genetic relationship with inflammatory bowel disease. Nat. Genet. 49, 269–273 (2017).

    Article  CAS  PubMed  Google Scholar 

  170. Gerussi, A. et al. Improving predictive accuracy in primary biliary cholangitis: a new genetic risk score. Liver Int. 44, 1952–1960 (2024).

    Article  CAS  PubMed  Google Scholar 

  171. Khera, A. V. et al. Genome-wide polygenic scores for common diseases identify individuals with risk equivalent to monogenic mutations. Nat. Genet. 50, 1219–1224 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  172. Invernizzi, P. et al. Frequency of monosomy X in women with primary biliary cirrhosis. Lancet 363, 533–535 (2004).

    Article  PubMed  Google Scholar 

  173. Lleo, A. et al. Y chromosome loss in male patients with primary biliary cirrhosis. J. Autoimmun. 41, 87–91 (2013).

    Article  PubMed  Google Scholar 

  174. Keur, N., Ricano-Ponce, I., Kumar, V. & Matzaraki, V. A systematic review of analytical methods used in genetic association analysis of the X-chromosome. Brief. Bioinform 23, bbac287 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  175. Asselta, R. et al. X chromosome contribution to the genetic architecture of primary biliary cholangitis. Gastroenterology 160, 2483–2495.e26 (2021).

    Article  CAS  PubMed  Google Scholar 

  176. Sumida, T. S., Cheru, N. T. & Hafler, D. A. The regulation and differentiation of regulatory T cells and their dysfunction in autoimmune diseases. Nat. Rev. Immunol. 24, 503–517 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  177. Iwakiri, Y. & Trebicka, J. Portal hypertension in cirrhosis: pathophysiological mechanisms and therapy. JHEP Rep. 3, 100316 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  178. Sandahl, T. D. et al. The macrophage activation marker sCD163 combined with markers of the Enhanced Liver Fibrosis (ELF) score predicts clinically significant portal hypertension in patients with cirrhosis. Aliment. Pharmacol. Ther. 43, 1222–1231 (2016).

    Article  CAS  PubMed  Google Scholar 

  179. Zhang, B., Ji, L. H., Zhang, C. G., Zhao, G. & Wu, Z. Y. Gender differences in vascular reactivity of mesenteric arterioles in portal hypertensive and non-portal hypertensive rats. World J. Gastroenterol. 25, 5953–5960 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  180. Robert, R., Chagneau-Derrode, C., Carretier, M., Mauco, G. & Silvain, C. Gender differences in vascular reactivity of aortas from rats with and without portal hypertension. J. Gastroenterol. Hepatol. 20, 890–894 (2005).

    Article  PubMed  Google Scholar 

  181. Wiest, R. & Groszmann, R. J. The paradox of nitric oxide in cirrhosis and portal hypertension: too much, not enough. Hepatology 35, 478–491 (2002).

    Article  CAS  PubMed  Google Scholar 

  182. Kajita, M. et al. iNOS expression in vascular resident macrophages contributes to circulatory dysfunction of splanchnic vascular smooth muscle contractions in portal hypertensive rats. Am. J. Physiol. Heart Circ. Physiol. 300, H1021–H1031 (2011).

    Article  CAS  PubMed  Google Scholar 

  183. Park, E. M. et al. Inducible nitric oxide synthase contributes to gender differences in ischemic brain injury. J. Cereb. Blood Flow. Metab. 26, 392–401 (2006).

    Article  CAS  PubMed  Google Scholar 

  184. Sacerdoti, D. et al. Arachidonic acid metabolites and endothelial dysfunction of portal hypertension. Prostaglandins Other Lipid Mediat. 120, 80–90 (2015).

    Article  CAS  PubMed  Google Scholar 

  185. Graupera, M. et al. Cyclooxygenase-derived products modulate the increased intrahepatic resistance of cirrhotic rat livers. Hepatology 37, 172–181 (2003).

    Article  CAS  PubMed  Google Scholar 

  186. Hou, M. C. et al. Enhanced cyclooxygenase-1 expression within the superior mesenteric artery of portal hypertensive rats: role in the hyperdynamic circulation. Hepatology 27, 20–27 (1998).

    Article  CAS  PubMed  Google Scholar 

  187. Wu, Y., Burns, R. C. & Sitzmann, J. V. Effects of nitric oxide and cyclooxygenase inhibition on splanchnic hemodynamics in portal hypertension. Hepatology 18, 1416–1421 (1993).

    Article  CAS  PubMed  Google Scholar 

  188. Reiberger, T. et al. Carvedilol for primary prophylaxis of variceal bleeding in cirrhotic patients with haemodynamic non-response to propranolol. Gut 62, 1634–1641 (2013).

    Article  CAS  PubMed  Google Scholar 

  189. Jachs, M. et al. Carvedilol achieves higher hemodynamic response and lower rebleeding rates than propranolol in secondary prophylaxis. Clin. Gastroenterol. Hepatol. 21, 2318–2326.e7 (2023).

    Article  CAS  PubMed  Google Scholar 

  190. Villanueva, C. et al. β blockers to prevent decompensation of cirrhosis in patients with clinically significant portal hypertension (PREDESCI): a randomised, double-blind, placebo-controlled, multicentre trial. Lancet 393, 1597–1608 (2019).

    Article  CAS  PubMed  Google Scholar 

  191. Villanueva, C. et al. Carvedilol reduces the risk of decompensation and mortality in patients with compensated cirrhosis in a competing-risk meta-analysis. J. Hepatol. 77, 1014–1025 (2022).

    Article  CAS  PubMed  Google Scholar 

  192. Thalheimer, U., Bosch, J. & Burroughs, A. K. How to prevent varices from bleeding: shades of grey – the case for nonselective β blockers. Gastroenterology 133, 2029–2036 (2007).

    Article  PubMed  Google Scholar 

  193. Reiberger, T. et al. Non-selective betablocker therapy decreases intestinal permeability and serum levels of LBP and IL-6 in patients with cirrhosis. J. Hepatol. 58, 911–921 (2013).

    Article  CAS  PubMed  Google Scholar 

  194. Jachs, M. et al. Amelioration of systemic inflammation in advanced chronic liver disease upon beta-blocker therapy translates into improved clinical outcomes. Gut 70, 1758–1767 (2021).

    Article  CAS  PubMed  Google Scholar 

  195. Walle, T., Walle, U. K., Cowart, T. D. & Conradi, E. C. Pathway-selective sex differences in the metabolic clearance of propranolol in human subjects. Clin. Pharmacol. Ther. 46, 257–263 (1989).

    Article  CAS  PubMed  Google Scholar 

  196. Burza, M. A., Marschall, H. U., Napoleone, L. & Molinaro, A. The 35-year odyssey of beta blockers in cirrhosis: any gender difference in sight? Pharmacol. Res. 119, 20–26 (2017).

    Article  CAS  PubMed  Google Scholar 

  197. Mortensen, C., Andersen, O., Krag, A., Bendtsen, F. & Moller, S. High-sensitivity C-reactive protein levels predict survival and are related to haemodynamics in alcoholic cirrhosis. Eur. J. Gastroenterol. Hepatol. 24, 619–626 (2012).

    Article  CAS  PubMed  Google Scholar 

  198. Bernardi, M., Moreau, R., Angeli, P., Schnabl, B. & Arroyo, V. Mechanisms of decompensation and organ failure in cirrhosis: from peripheral arterial vasodilation to systemic inflammation hypothesis. J. Hepatol. 63, 1272–1284 (2015).

    Article  CAS  PubMed  Google Scholar 

  199. Zanetto, A. et al. Increased platelet aggregation in patients with decompensated cirrhosis indicates higher risk of further decompensation and death. J. Hepatol. 77, 660–669 (2022).

    Article  CAS  PubMed  Google Scholar 

  200. D’Amico, G. et al. Competing risks and prognostic stages of cirrhosis: a 25-year inception cohort study of 494 patients. Aliment. Pharmacol. Ther. 39, 1180–1193 (2014).

    Article  PubMed  Google Scholar 

  201. Deltenre, P., Zanetto, A., Saltini, D., Moreno, C. & Schepis, F. The role of transjugular intrahepatic portosystemic shunt in patients with cirrhosis and ascites: recent evolution and open questions. Hepatology 77, 640–658 (2023).

    PubMed  Google Scholar 

  202. Ripoll, C. et al. Hepatic venous pressure gradient predicts clinical decompensation in patients with compensated cirrhosis. Gastroenterology 133, 481–488 (2007).

    Article  CAS  PubMed  Google Scholar 

  203. Simbrunner, B. et al. Bacterial translocation occurs early in cirrhosis and triggers a selective inflammatory response. Hepatol. Int. 17, 1045–1056 (2023).

    Article  PubMed  Google Scholar 

  204. Austin, A. S., Mahida, Y. R., Clarke, D., Ryder, S. D. & Freeman, J. G. A pilot study to investigate the use of oxpentifylline (pentoxifylline) and thalidomide in portal hypertension secondary to alcoholic cirrhosis. Aliment. Pharmacol. Ther. 19, 79–88 (2004).

    Article  CAS  PubMed  Google Scholar 

  205. Caraceni, P., Abraldes, J. G., Gines, P., Newsome, P. N. & Sarin, S. K. The search for disease-modifying agents in decompensated cirrhosis: from drug repurposing to drug discovery. J. Hepatol. 75, S118–S134 (2021).

    Article  CAS  PubMed  Google Scholar 

  206. Jepsen, P. & Younossi, Z. M. The global burden of cirrhosis: a review of disability-adjusted life-years lost and unmet needs. J. Hepatol. 75, S3–S13 (2021).

    Article  PubMed  Google Scholar 

  207. Cherubini, A., Della Torre, S., Pelusi, S. & Valenti, L. Sexual dimorphism of metabolic dysfunction-associated steatotic liver disease. Trends Mol. Med., https://doi.org/10.1016/j.molmed.2024.05.013 (2024).

    Article  PubMed  Google Scholar 

  208. Hofer, B. S. et al. Acute hemodynamic response to propranolol predicts bleeding and nonbleeding decompensation in patients with cirrhosis. Hepatol. Commun. 6, 2569–2580 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  209. Sanyal, A. J. et al. The natural history of advanced fibrosis due to nonalcoholic steatohepatitis: data from the simtuzumab trials. Hepatology 70, 1913–1927 (2019).

    Article  CAS  PubMed  Google Scholar 

  210. Garcia-Tsao, G. et al. Randomized placebo-controlled trial of emricasan for non-alcoholic steatohepatitis-related cirrhosis with severe portal hypertension. J. Hepatol. 72, 885–895 (2020).

    Article  CAS  PubMed  Google Scholar 

  211. Reiberger, T. et al. The rationale and study design of two phase II trials examining the effects of BI 685,509, a soluble guanylyl cyclase activator, on clinically significant portal hypertension in patients with compensated cirrhosis. Trials 24, 293 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  212. Harrison, S. A. et al. A phase 3, randomized, controlled trial of resmetirom in NASH with liver fibrosis. N. Engl. J. Med. 390, 497–509 (2024).

    Article  PubMed  Google Scholar 

  213. Burghart, L. et al. Distinct prognostic value of different portal hypertension-associated features in patients with primary biliary cholangitis. J. Gastroenterol. 57, 99–110 (2022).

    Article  CAS  PubMed  Google Scholar 

  214. Geer, E. B. & Shen, W. Gender differences in insulin resistance, body composition, and energy balance. Gend. Med. 6, 60–75 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  215. Bredella, M. A. Sex differences in body composition. Adv. Exp. Med. Biol. 1043, 9–27 (2017).

    Article  CAS  PubMed  Google Scholar 

  216. Fain, J. N., Madan, A. K., Hiler, M. L., Cheema, P. & Bahouth, S. W. Comparison of the release of adipokines by adipose tissue, adipose tissue matrix, and adipocytes from visceral and subcutaneous abdominal adipose tissues of obese humans. Endocrinology 145, 2273–2282 (2004).

    Article  CAS  PubMed  Google Scholar 

  217. Heymsfield, S. B. & Wadden, T. A. Mechanisms, pathophysiology, and management of obesity. N. Engl. J. Med. 376, 254–266 (2017).

    Article  CAS  PubMed  Google Scholar 

  218. Ebadi, M. et al. Review article: prognostic significance of body composition abnormalities in patients with cirrhosis. Aliment. Pharmacol. Ther. 52, 600–618 (2020).

    Article  PubMed  Google Scholar 

  219. Mitsiopoulos, N. et al. Cadaver validation of skeletal muscle measurement by magnetic resonance imaging and computerized tomography. J. Appl. Physiol. 85, 115–122 (1998).

    Article  CAS  PubMed  Google Scholar 

  220. Kim, G., Kang, S. H., Kim, M. Y. & Baik, S. K. Prognostic value of sarcopenia in patients with liver cirrhosis: a systematic review and meta-analysis. PLoS ONE 12, e0186990 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  221. van Vugt, J. L. et al. Systematic review and meta-analysis of the impact of computed tomography-assessed skeletal muscle mass on outcome in patients awaiting or undergoing liver transplantation. Am. J. Transpl. 16, 2277–2292 (2016).

    Article  Google Scholar 

  222. Carey, E. J. et al. A multicenter study to define sarcopenia in patients with end-stage liver disease. Liver Transpl. 23, 625–633 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  223. Carey, E. J. et al. A North American expert opinion statement on sarcopenia in liver transplantation. Hepatology 70, 1816–1829 (2019).

    Article  PubMed  Google Scholar 

  224. Nishikawa, H. et al. Japan Society of Hepatology guidelines for sarcopenia in liver disease (1st edition): recommendation from the working group for creation of sarcopenia assessment criteria. Hepatol. Res. 46, 951–963 (2016).

    Article  PubMed  Google Scholar 

  225. van Vugt, J. L. A. et al. Low skeletal muscle mass is associated with increased hospital costs in patients with cirrhosis listed for liver transplantation – a retrospective study. Transpl. Int. 31, 165–174 (2018).

    Article  PubMed  Google Scholar 

  226. Montano-Loza, A. J. et al. Severe muscle depletion predicts postoperative length of stay but is not associated with survival after liver transplantation. Liver Transpl. 20, 640–648 (2014).

    Article  PubMed  Google Scholar 

  227. Ando, Y. et al. Sarcopenia impairs health-related quality of life in cirrhotic patients. Eur. J. Gastroenterol. Hepatol. 31, 1550–1556 (2019).

    Article  PubMed  Google Scholar 

  228. Kaido, T. et al. Impact of sarcopenia on survival in patients undergoing living donor liver transplantation. Am. J. Transpl. 13, 1549–1556 (2013).

    Article  CAS  Google Scholar 

  229. Montano-Loza, A. J. et al. Muscle wasting is associated with mortality in patients with cirrhosis. Clin. Gastroenterol. Hepatol. 10, 166–173.e1 (2012).

    Article  PubMed  Google Scholar 

  230. Montano-Loza, A. J. et al. Sarcopenic obesity and myosteatosis are associated with higher mortality in patients with cirrhosis. J. Cachexia, Sarcopenia Muscle 7, 126–135 (2016).

    Article  PubMed  Google Scholar 

  231. Baracos, V. E. & Arribas, L. Sarcopenic obesity: hidden muscle wasting and its impact for survival and complications of cancer therapy. Ann. Oncol. 29, ii1–ii9 (2018).

    Article  CAS  PubMed  Google Scholar 

  232. Eslamparast, T., Montano-Loza, A. J., Raman, M. & Tandon, P. Sarcopenic obesity in cirrhosis – the confluence of 2 prognostic titans. Liver Int. 38, 1706–1717 (2018).

    Article  PubMed  Google Scholar 

  233. Pou, K. M. et al. Patterns of abdominal fat distribution: the Framingham Heart Study. Diabetes Care 32, 481–485 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  234. Kim, D. et al. Body fat distribution and risk of incident and regressed nonalcoholic fatty liver disease. Clin. Gastroenterol. Hepatol. 14, 132–138.e134 (2016).

    Article  PubMed  Google Scholar 

  235. Koo, B. K. et al. Sarcopenia is an independent risk factor for non-alcoholic steatohepatitis and significant fibrosis. J. Hepatol. 66, 123–131 (2017).

    Article  PubMed  Google Scholar 

  236. Pan, X. Y. et al. Low skeletal muscle mass is associated with more severe histological features of non-alcoholic fatty liver disease in male. Hepatol. Int. 16, 1085–1093 (2022).

    Article  PubMed  Google Scholar 

  237. Cao, Y. T. et al. Sex- and reproductive status-specific relationships between body composition and non-alcoholic fatty liver disease. BMC Gastroenterol. 23, 364 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  238. Montano-Loza, A. J. et al. Visceral adiposity increases risk for hepatocellular carcinoma in male patients with cirrhosis and recurrence after liver transplant. Hepatology 67, 914–923 (2018).

    Article  PubMed  Google Scholar 

  239. Terjimanian, M. N. et al. Abdominal adiposity, body composition and survival after liver transplantation. Clin. Transplant. 30, 289–294 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  240. Ha, N. B. et al. Sarcopenic visceral obesity is associated with increased post-liver transplant mortality in acutely ill patients with cirrhosis. Am. J. Transpl. 22, 2195–2202 (2022).

    Article  Google Scholar 

  241. Saponaro, C., Gaggini, M., Carli, F. & Gastaldelli, A. The subtle balance between lipolysis and lipogenesis: a critical point in metabolic homeostasis. Nutrients 7, 9453–9474 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  242. Johannsen, D. L. et al. Effect of 8 weeks of overfeeding on ectopic fat deposition and insulin sensitivity: testing the “adipose tissue expandability” hypothesis. Diabetes Care 37, 2789–2797 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  243. Ebadi, M. et al. Low subcutaneous adiposity associates with higher mortality in female patients with cirrhosis. J. Hepatol. 69, 608–616 (2018).

    Article  PubMed  Google Scholar 

  244. Rodrigues, S. G., Brabandt, B., Stirnimann, G., Maurer, M. H. & Berzigotti, A. Adipopenia correlates with higher portal pressure in patients with cirrhosis. Liver Int. 39, 1672–1681 (2019).

    Article  PubMed  Google Scholar 

  245. Labeur, T. A. et al. Body composition is an independent predictor of outcome in patients with hepatocellular carcinoma treated with sorafenib. Liver Cancer 8, 255–270 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  246. Alberino, F. et al. Nutrition and survival in patients with liver cirrhosis. Nutrition 17, 445–450 (2001).

    Article  CAS  PubMed  Google Scholar 

  247. Quiroz-Aldave, J. E. et al. From liver to hormones: the endocrine consequences of cirrhosis. World J. Gastroenterol. 30, 1073–1095 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  248. Foresta, C., Schipilliti, M., Ciarleglio, F. A., Lenzi, A. & D’Amico, D. Male hypogonadism in cirrhosis and after liver transplantation. J. Endocrinol. Invest. 31, 470–478 (2008).

    Article  CAS  PubMed  Google Scholar 

  249. Lundsgaard, A. M. & Kiens, B. Gender differences in skeletal muscle substrate metabolism – molecular mechanisms and insulin sensitivity. Front. Endocrinol. 5, 195 (2014).

    Article  Google Scholar 

  250. Harimoto, N. et al. Sarcopenia is a poor prognostic factor following hepatic resection in patients aged 70 years and older with hepatocellular carcinoma. Hepatol. Res. 46, 1247–1255 (2016).

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

The authors thank NIH center P30 DK120515 for support to B.S. and the German Research Foundation (DFG Ta434/8-1, SFB/TRR 296 and CRC1382, project ID 403224013) for support to F.T.

Author information

Authors and Affiliations

Authors

Contributions

The authors contributed equally to all aspects of the article.

Corresponding author

Correspondence to Patrizia Burra.

Ethics declarations

Competing interests

P.B. has received lecture and consulting fees from Biotest, Chiesi Farmaceutici and Sandoz. B.S. has been consulting for Ambys Medicines, Ferring Research Institute, Gelesis, HOST Therabiomics, Intercept Pharmaceuticals, Mabwell Therapeutics, Patara Pharmaceuticals, Surrozen and Takeda. B.S. is founder of Nterica Bio. UC San Diego has filed several patents with B.S. as inventor related to this work. B.S.’s institution, UC San Diego, has received research support from Axial Biotherapeutics, BiomX, ChromoLogic, CymaBay Therapeutics, Intercept Pharmaceuticals, NGM Biopharmaceuticals, Prodigy Biotech and Synlogic Operating Company. T.R. received grant support from Abbvie, Boehringer Ingelheim, Gilead, Intercept/Advanz Pharma, MSD, Myr Pharmaceuticals, Philips Healthcare, Pliant, Siemens and W. L. Gore & Associates; speaking honoraria from Abbvie, Gilead, Intercept/Advanz Pharma, Roche, MSD, W. L. Gore & Associates; consulting/advisory board fee from Abbvie, Astra Zeneca, Bayer, Boehringer Ingelheim, Gilead, Intercept/Advanz Pharma, MSD, Resolution Therapeutics, Siemens; and travel support from Abbvie, Boehringer Ingelheim, Dr. Falk Pharma, Gilead and Roche. T.H.K. received speaker fees from Gilead and did consulting for Falk Pharma, Albireo, MSD and Boeringer Ingelheim – consulting. F.T.’s laboratory has received research funding from Gilead, AstraZeneca, and MSD (funding to the institution). F.T. has received honoraria for consulting or lectures from AstraZeneca, Gilead, AbbVie, BMS, Boehringer, Madrigal, Intercept, Falk, Inventiva, MSD, GSK, Orphalan, Merz, Pfizer, Alnylam, CSL Behring, Novo Nordisk, Sanofi, and Novartis. A.Z., A.J.M.-L. and R.A. have nothing to disclose.

Peer review

Peer review information

Nature Reviews Gastroenterology & Hepatology thanks Joost Drenth and the other, anonymous, reviewers for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Related links

GnomAD: https://gnomad.broadinstitute.org/

NHGRI-EBI GWAS: https://www.ebi.ac.uk/gwas/

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Burra, P., Zanetto, A., Schnabl, B. et al. Hepatic immune regulation and sex disparities. Nat Rev Gastroenterol Hepatol (2024). https://doi.org/10.1038/s41575-024-00974-5

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41575-024-00974-5

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing