Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Redox-neutral electrochemical decontamination of hypersaline wastewater with high technology readiness level

Abstract

Industrial hypersaline wastewaters contain diverse pollutants that harm the environment. Recovering clean water, alkali and acid from these wastewaters can promote circular economy and environmental protection. However, current electrochemical and advanced oxidation processes, which rely on hydroxyl radicals to degrade organic compounds, are inefficient and energy intensive. Here we report a flow-through redox-neutral electrochemical reactor (FRER) that effectively removes organic contaminants from hypersaline wastewaters via the chlorination–dehalogenation–hydroxylation route involving radical–radical cross-coupling. Bench-scale experiments demonstrate that the FRER achieves over 75% removal of total organic carbon across various compounds, and it maintains decontamination performance for over 360 h and continuously treats real hypersaline wastewaters for two months without corrosion. Integrating the FRER with electrodialysis reduces operating costs by 63.3% and CO2 emissions by 82.6% when compared with traditional multi-effect evaporation-crystallization techniques, placing our system at technology readiness levels of 7–8. The desalinated water, high-purity NaOH (>95%) and acid produced offset industrial production activities and thus support global sustainable development objectives.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Electrochemical systems for recovering resources from hypersaline wastewaters.
Fig. 2: Bench-scale FRER effectively decomposes various organic compounds.
Fig. 3: Identification and quantification of various radicals in FRER.
Fig. 4: Radical–radical cross-coupling removes TOC in FRER.
Fig. 5: The FRER is sufficiently stable for extended operation.
Fig. 6: Field application of FRER-ED.

Similar content being viewed by others

Data availability

All data generated for this study are available in the Article and Supplementary Information. Source experimental data are available from figshare repository at https://doi.org/10.6084/m9.figshare.25390759 (ref. 51).

References

  1. Chung, M. G., Frank, K. A., Pokhrel, Y., Dietz, T. & Liu, J. Natural infrastructure in sustaining global urban freshwater ecosystem services. Nat. Sustain. 4, 1068–1075 (2021).

    Article  Google Scholar 

  2. Zhang, X. et al. Managing nitrogen for sustainable development. Nature 528, 51–59 (2015).

    Article  CAS  PubMed  Google Scholar 

  3. Panagopoulos, A. & Giannika, V. Comparative techno-economic and environmental analysis of minimal liquid discharge (MLD) and zero liquid discharge (ZLD) desalination systems for seawater brine treatment and valorization. Sustain. Energy Technol. Assess. 53, 102477 (2022).

    Google Scholar 

  4. Menon, A. K., Haechler, I., Kaur, S., Lubner, S. & Prasher, R. S. Enhanced solar evaporation using a photo-thermal umbrella for wastewater management. Nat. Sustain. 3, 144–151 (2020).

    Article  Google Scholar 

  5. Kumar, A., Phillips, K. R., Thiel, G. P., Schröder, U. & Lienhard, J. H. Direct electrosynthesis of sodium hydroxide and hydrochloric acid from brine streams. Nat. Catal. 2, 106–113 (2019).

    Article  CAS  Google Scholar 

  6. Shehzad, M. A. et al. Shielded goethite catalyst that enables fast water dissociation in bipolar membranes. Nat. Commun. 12, 9 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Zhang, W. et al. Impact of chloride ions on UV/H2O2 and UV/persulfate advanced oxidation processes. Environ. Sci. Technol. 52, 7380–7389 (2018).

    Article  CAS  PubMed  Google Scholar 

  8. Chen, Y. et al. Tip-intensified interfacial microenvironment reconstruction promotes an electrocatalytic chlorine evolution reaction. ACS Catal. 12, 14376–14386 (2022).

    Article  CAS  Google Scholar 

  9. Liu, J., Zhang, X. & Li, Y. Photoconversion of chlorinated saline wastewater DBPs in receiving seawater is overall a detoxification process. Environ. Sci. Technol. 51, 58–67 (2017).

    Article  CAS  PubMed  Google Scholar 

  10. Yang, T. et al. Efficient degradation of organoarsenic by UV/chlorine treatment: kinetics, mechanism, enhanced arsenic removal, and cytotoxicity. Environ. Sci. Technol. 55, 2037–2047 (2021).

    Article  CAS  PubMed  Google Scholar 

  11. Rao, U. et al. Structural dependence of reductive defluorination of linear PFAS compounds in a UV/electrochemical system. Environ. Sci. Technol. 54, 10668–10677 (2020).

    Article  CAS  PubMed  Google Scholar 

  12. Guo, K., Wu, Z., Chen, C. & Fang, J. UV/chlorine process: an efficient advanced oxidation process with multiple radicals and functions in water treatment. Acc. Chem. Res. 55, 286–297 (2022).

    Article  CAS  PubMed  Google Scholar 

  13. Choi, C. et al. Efficient electrocatalytic valorization of chlorinated organic water pollutant to ethylene. Nat. Nanotechnol. 18, 160–167 (2023).

    Article  CAS  PubMed  Google Scholar 

  14. Fang, J., Fu, Y. & Shang, C. The roles of reactive species in micropollutant degradation in the UV/free chlorine system. Environ. Sci. Technol. 48, 1859–1868 (2014).

    Article  CAS  PubMed  Google Scholar 

  15. Zhang, J., Zhang, G., Lan, H., Qu, J. & Liu, H. Synergetic hydroxyl radical oxidation with atomic hydrogen reduction lowers the organochlorine conversion barrier and potentiates effective contaminant mineralization. Environ. Sci. Technol. 55, 3296–3304 (2021).

    Article  CAS  PubMed  Google Scholar 

  16. Llorente, M. J., Nguyen, B. H., Kubiak, C. P. & Moeller, K. D. Paired electrolysis in the simultaneous production of synthetic intermediates and substrates. J. Am. Chem. Soc. 138, 15110–15113 (2016).

    Article  CAS  PubMed  Google Scholar 

  17. Min, Y. et al. Mimicking reductive dehalogenases for efficient electrocatalytic water dechlorination. Nat. Commun. 14, 5134 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Dwinandha, D., Zhang, B. & Fujii, M. Prediction of reaction mechanism for OH radical-mediated phenol oxidation using quantum chemical calculation. Chemosphere 291, 132763 (2022).

    Article  CAS  PubMed  Google Scholar 

  19. Atobe, M., Tateno, H. & Matsumura, Y. Applications of flow microreactors in electrosynthetic processes. Chem. Rev. 118, 4541–4572 (2018).

    Article  CAS  PubMed  Google Scholar 

  20. Finke, C. E. et al. Enhancing the activity of oxygen-evolution and chlorine-evolution electro-catalysts by atomic layer deposition of TiO2. Energy Environ. Sci. 12, 358–365 (2019).

    Article  CAS  PubMed  Google Scholar 

  21. Karlsson, R. K. B. & Cornell, A. Selectivity between oxygen and chlorine evolution in the chlor-alkali and chlorate processes. Chem. Rev. 116, 2982–3028 (2016).

    Article  CAS  PubMed  Google Scholar 

  22. Näslund, L.-Å. et al. The role of TiO2 doping on RuO2-coated electrodes for the water oxidation reaction. J. Phys. Chem. C 117, 6126–6135 (2013).

    Article  Google Scholar 

  23. Jiao, Y., Jiang, H. & Chen, F. RuO2/TiO2/Pt ternary photocatalysts with epitaxial heterojunction and their application in CO oxidation. ACS Catal. 4, 2249–2257 (2014).

    Article  CAS  Google Scholar 

  24. Morales-Guio, C. G. et al. Solar hydrogen production by amorphous silicon photocathodes coated with a magnetron sputter deposited Mo2C catalyst. J. Am. Chem. Soc. 137, 7035–7038 (2015).

    Article  CAS  PubMed  Google Scholar 

  25. Dong, C. et al. Fully exposed palladium cluster catalysts enable hydrogen production from nitrogen heterocycles. Nat. Catal. 5, 485–493 (2022).

    Article  CAS  Google Scholar 

  26. Xiong, H. et al. Engineering catalyst supports to stabilize PdOx two-dimensional rafts for water-tolerant methane oxidation. Nat. Catal. 4, 830–839 (2021).

    Article  CAS  Google Scholar 

  27. Ghassemzadeh, L., Peckham, T. J., Weissbach, T., Luo, X. & Holdcroft, S. Selective formation of hydrogen and hydroxyl radicals by electron beam irradiation and their reactivity with perfluorosulfonated acid ionomer. J. Am. Chem. Soc. 135, 15923–15932 (2013).

    Article  CAS  PubMed  Google Scholar 

  28. Xu, B., Chen, Z., Zhang, G. & Wang, Y. On-demand atomic hydrogen provision by exposing electron-rich cobalt sites in an open-framework structure toward superior electrocatalytic nitrate conversion to dinitrogen. Environ. Sci. Technol. 56, 614–623 (2022).

    Article  CAS  PubMed  Google Scholar 

  29. Wang, J. et al. Ambient ammonia synthesis via palladium-catalyzed electrohydrogenation of dinitrogen at low overpotential. Nat. Commun. 9, 1795 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  30. Kakade, B. A., Tamaki, T., Ohashi, H. & Yamaguchi, T. Highly active bimetallic PdPt and CoPt nanocrystals for methanol electro-oxidation. J. Phys. Chem. C 116, 7464–7470 (2012).

    Article  CAS  Google Scholar 

  31. Zuo, K. et al. Electrified water treatment: fundamentals and roles of electrode materials. Nat. Rev. Mater. 8, 472–490 (2023).

    Article  Google Scholar 

  32. Wang, H.-X., Toh, W. L., Tang, B. Y. & Surendranath, Y. Metal surfaces catalyse polarization-dependent hydride transfer from H2. Nat. Catal. 6, 351–362 (2023).

    Article  Google Scholar 

  33. Sakamoto, H. et al. Photocatalytic dehalogenation of aromatic halides on Ta2O5-supported Pt–Pd bimetallic alloy nanoparticles activated by visible light. ACS Catal. 7, 5194–5201 (2017).

    Article  CAS  Google Scholar 

  34. Walter, T. H. et al. Spin trapping in heterogeneous electron transfer processes. Can. J. Chem. 60, 1621–1636 (1982).

    Article  CAS  Google Scholar 

  35. Barroso-Martínez, J. S. et al. Real-time detection of hydroxyl radical generated at operating electrodes via redox-active adduct formation using scanning electrochemical microscopy. J. Am. Chem. Soc. 144, 18896–18907 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  36. Hong, J. et al. Metastable hexagonal close-packed palladium hydride in liquid cell TEM. Nature 603, 631–636 (2022).

    Article  CAS  PubMed  Google Scholar 

  37. Van Buren, J., Prasse, C., Marron, E. L., Skeel, B. & Sedlak, D. L. Ring-cleavage products produced during the initial phase of oxidative treatment of alkyl-substituted aromatic compounds. Environ. Sci. Technol. 54, 8352–8361 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  38. Wang, Y., Wei, Y., Song, W., Chen, C. & Zhao, J. Photocatalytic hydrodehalogenation for the removal of halogenated aromatic contaminants. ChemCatChem 11, 258–268 (2019).

    Article  CAS  Google Scholar 

  39. Yang, J. et al. CO2-mediated organocatalytic chlorine evolution under industrial conditions. Nature 617, 519–523 (2023).

    Article  CAS  PubMed  Google Scholar 

  40. Over, H. Surface chemistry of ruthenium dioxide in heterogeneous catalysis and electrocatalysis: from fundamental to applied research. Chem. Rev. 112, 3356–3426 (2012).

    Article  CAS  PubMed  Google Scholar 

  41. Lin, J. et al. Shielding effect enables fast ion transfer through nanoporous membrane for highly energy-efficient electrodialysis. Nat. Water 1, 725–735 (2023).

    Article  Google Scholar 

  42. Butler, J. D., Parkerton, T. F., Redman, A. D., Letinski, D. J. & Cooper, K. R. Assessing aromatic-hydrocarbon toxicity to fish early life stages using passive-dosing methods and target-lipid and chemical-activity models. Environ. Sci. Technol. 50, 8305–8315 (2016).

    Article  CAS  PubMed  Google Scholar 

  43. Stinn, C. & Allanore, A. Selective sulfidation of metal compounds. Nature 602, 78–83 (2022).

    Article  CAS  PubMed  Google Scholar 

  44. Zabaniotou, A. Redesigning a bioenergy sector in EU in the transition to circular waste-based bioeconomy—a multidisciplinary review. J. Clean. Prod. 177, 197–206 (2018).

    Article  Google Scholar 

  45. Andrew, R. M. Global CO2 emissions from cement production. Earth Syst. Sci. Data 10, 195–217 (2018).

    Article  Google Scholar 

  46. Zhao, C., Dao, R., Wang, Y., Yao, J. & Li, H. A DFT investigation exploring the influence of lone electron pair on hyperfine structures of N-centered radicals. Chem. Phys. 517, 13–23 (2019).

    Article  CAS  Google Scholar 

  47. Houriez, C., Ferre, N., Siri, D., Tordo, P. & Masella, M. Assessing the accuracy of a QM/MM//MD combined protocol to compute spectromagnetic properties of polyfunctional nitroxides in solution. Theor. Chem. Acc. 131, 1240 (2012).

  48. Yamaguchi, M. DFT calculation of isotropic hyperfine coupling constants of spin adducts of 5,5-dimethyl-1-pyrroline-N-oxide in benzene and water. Comput. Theor. Chem. 1104, 24–31 (2017).

    Article  CAS  Google Scholar 

  49. Cohen, A. J., Mori-Sánchez, P. & Yang, W. Challenges for density functional theory. Chem. Rev. 112, 289–320 (2012).

    Article  CAS  PubMed  Google Scholar 

  50. Gaussian 16 rev. C.01 (Gaussian, Inc., 2016).

  51. Zhang, G. & Liu, H. Source data for “Redox-neutral electrochemical decontamination of hypersaline wastewater with high technology readiness level”. figshare https://doi.org/10.6084/m9.figshare.25390759 (2024).

Download references

Acknowledgements

We acknowledge the National Natural Science Foundation of China (grants 52221004 to H.L., 22022606 to G. Zhang), X. Li and J. Lin from Beijing Capital Eco-Environment Protection Group Co., Ltd. for supporting this project and M.Z. Li from Huaibei GO-ON Power Co., Ltd. for supporting our field experiment. We thank Q. Liu from the Department of Chemistry, Tsinghua University, for discussions on the mechanisms of catalysis and electrochemical measurements. We also thank S. Qu from Beijing Institute of Technology for supporting LCA analysis. We thank A.L. Chun of Science Storylab for critically reading and editing the paper.

Author information

Authors and Affiliations

Authors

Contributions

H.L. directed the project. G. Zhang designed the experiments. G. Zhang and Y.L. synthesized the materials and performed the bench-scale degradation and electrochemical experiments. G. Zhang and C.Z. analysed results of in situ EPR experiments. J.G., Y.L. and Q.C. performed the on-site field experiments. G. Zhou carried out the DFT calculations. W.-J.F. and Y.L. collected and analysed the HRMS data. Q.Z. and Y.L. conducted the LCA analysis. G. Zhang, Y.S., Y.L. and H.L. co-wrote the Article. H.L., Q.J., F.X. and J.Q. revised the Article. All authors discussed the results and commented on the Article.

Corresponding author

Correspondence to Huijuan Liu.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Nanotechnology thanks Yang Yang and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–39, Discussion and Tables 1–8.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, G., Li, Y., Zhao, C. et al. Redox-neutral electrochemical decontamination of hypersaline wastewater with high technology readiness level. Nat. Nanotechnol. (2024). https://doi.org/10.1038/s41565-024-01669-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41565-024-01669-3

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing