Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Dynamic topological domain walls driven by lithium intercalation in graphene

Abstract

Stacking engineering in van der Waals (vdW) materials is a powerful method to control topological electronic phases for quantum device applications. Atomic intercalation into the vdW material can modulate the stacking structure at the atomic scale without a highly technical protocol. Here we report that lithium intercalation in a topologically structured graphene/buffer system on SiC(0001) drives dynamic topological domain wall (TDW) motions associated with stacking order change by using an in situ aberration-corrected low-energy electron microscope in combination with theoretical modelling. We observe sequential and selective lithium intercalation that starts at topological crossing points (AA stacking) and then selectively extends to AB stacking domains. Lithium intercalation locally changes the domain stacking order to AA and in turn alters the neighbouring TDW stacking orders, and continuous intercalation drives the evolution of the whole topological structure network. Our work reveals moving TDWs protected by the topology of stacking and lays the foundation for controlling the stacking structure via atomic intercalation. These findings open up new avenues to realize intercalation-driven vdW electronic devices.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Stacking domains in pristine graphene epitaxially grown on SiC(0001).
Fig. 2: Dynamic observation of lithium intercalation and deintercalation.
Fig. 3: Domain-selective lithium intercalation into the graphene/buffer interlayer.
Fig. 4: Dynamic evolution of topological defects following lithium intercalation for pinned TCPs and mobile TDWs.
Fig. 5: Atomistic understanding of stacking structure transition and TDWs evolution.

Data availability

Datasets used to construct plots and support other findings in this article are available at ScienceDB. Research data with the identifier https://doi.org/10.57760/sciencedb.07810 (ref. 45).

References

  1. Fu, L., Kane, C. L. & Mele, E. J. Topological insulators in three dimensions. Phys. Rev. Lett. 98, 106803 (2007).

    Article  Google Scholar 

  2. Son, Y. W., Choi, S. M., Hong, Y. P., Woo, S. & Jhi, S. H. Electronic topological transition in sliding bilayer graphene. Phys. Rev. B 84, 155410 (2011).

    Article  Google Scholar 

  3. Ju, L. et al. Topological valley transport at bilayer graphene domain walls. Nature 520, 650–655 (2015).

    Article  CAS  Google Scholar 

  4. Hsu, Y. F. & Guo, G. Y. Anomalous integer quantum Hall effect in AA-stacked bilayer graphene. Phys. Rev. B 82, 165404 (2010).

    Article  Google Scholar 

  5. Zhang, F., MacDonald, A. H. & Mele, E. J. Valley Chern numbers and boundary modes in gapped bilayer graphene. Proc. Natl Acad. Sci. USA 110, 10546–10551 (2013).

    Article  CAS  Google Scholar 

  6. Huang, S. et al. Topologically protected helical states in minimally twisted bilayer graphene. Phys. Rev. Lett. 121, 037702 (2018).

    Article  CAS  Google Scholar 

  7. Li, J. et al. Gate-controlled topological conducting channels in bilayer graphene. Nat. Nanotechnol. 11, 1060–1065 (2016).

    Article  CAS  Google Scholar 

  8. Chen, X. D. et al. High-precision twist-controlled bilayer and trilayer graphene. Adv. Mater. 28, 2563–2570 (2016).

    Article  CAS  Google Scholar 

  9. Caffrey, N. M. et al. Structural and electronic properties of Li-intercalated graphene on SiC(0001). Phys. Rev. B 93, 195421 (2016).

    Article  Google Scholar 

  10. Dresselhaus, M. S. & Dresselhaus, G. Intercalation compounds of graphite. Adv. Phys. 30, 139–326 (1981).

    Article  CAS  Google Scholar 

  11. Lorenzo, M., Escher, C., Latychevskaia, T. & Fink, H. W. Metal adsorption and nucleation on free-standing graphene by low-energy electron point source microscopy. Nano Lett. 18, 3421–3427 (2018).

    Article  CAS  Google Scholar 

  12. Wan, W. et al. Design and commissioning of an aberration-corrected ultrafast spin-polarized low energy electron microscope with multiple electron sources. Ultramicroscopy 174, 89–96 (2017).

    Article  CAS  Google Scholar 

  13. First, P. N. et al. Epitaxial graphenes on silicon carbide. MRS Bull. 35, 296–305 (2010).

    Article  CAS  Google Scholar 

  14. Hibino, H., Mizuno, S., Kageshima, H., Nagase, M. & Yamaguchi, H. Stacking domains of epitaxial few-layer graphene on SiC(0001). Phys. Rev. B 80, 085406 (2009).

    Article  Google Scholar 

  15. de Jong, T. A. et al. Intrinsic stacking domains in graphene on silicon carbide: a pathway for intercalation. Phys. Rev. Mater. 2, 104005 (2018).

    Article  Google Scholar 

  16. Chung, W. & Altman, M. Step contrast in low energy electron microscopy. Ultramicroscopy 74, 237–246 (1998).

    Article  CAS  Google Scholar 

  17. Mathieu, C. et al. Effect of oxygen adsorption on the local properties of epitaxial graphene on SiC (0001). Phys. Rev. B 86, 035435 (2012).

    Article  Google Scholar 

  18. Alden, J. S. et al. Strain solitons and topological defects in bilayer graphene. Proc. Natl Acad. Sci. USA 110, 11256–11260 (2013).

    Article  CAS  Google Scholar 

  19. Butz, B. et al. Dislocations in bilayer graphene. Nature 505, 533–537 (2014).

    Article  CAS  Google Scholar 

  20. Lin, J. et al. AC/AB stacking boundaries in bilayer graphene. Nano Lett. 13, 3262–3268 (2013).

    Article  CAS  Google Scholar 

  21. Virojanadara, C., Watcharinyanon, S., Zakharov, A. A. & Johansson, L. I. Epitaxial graphene on 6H-SiC and Li intercalation. Phys. Rev. B 82, 205402 (2010).

    Article  Google Scholar 

  22. Gadelha, A. C. et al. Localization of lattice dynamics in low-angle twisted bilayer graphene. Nature 590, 405–409 (2021).

    Article  CAS  Google Scholar 

  23. Hull, D. & Bacon, D. J. Introduction to Dislocations Vol. 37 (Elsevier, 2011).

  24. Yang, H., Kim, S., Chhowalla, M. & Lee, Y. Structural and quantum-state phase transitions in van der Waals layered materials. Nat. Phys. 13, 931–937 (2017).

    Article  CAS  Google Scholar 

  25. Xi, X., Ma, J., Wan, S., Dong, C. & Sun, X. Observation of chiral edge states in gapped nanomechanical graphene. Sci. Adv. 7, eabe1398 (2021).

    Article  CAS  Google Scholar 

  26. Yao, W., Yang, S. A. & Niu, Q. Edge states in graphene: from gapped flat-band to gapless chiral modes. Phys. Rev. Lett. 102, 096801 (2009).

    Article  Google Scholar 

  27. Wang, C., Gao, Y., Lv, H., Xu, X. & Xiao, D. Stacking domain wall magnons in twisted van der Waals magnets. Phys. Rev. Lett. 125, 247201 (2020).

    Article  CAS  Google Scholar 

  28. Tong, Q., Liu, F., Xiao, J. & Yao, W. Skyrmions in the Moiré of van der Waals 2D magnets. Nano Lett. 18, 7194–7199 (2008).

    Article  Google Scholar 

  29. Amelinckx, S. & Delavignette, P. Observation of dislocations in non-metallic layer structures. Nature 185, 603–604 (1960).

    Article  CAS  Google Scholar 

  30. Zhou, J. et al. Layered intercalation materials. Adv. Mater. 33, 2004557 (2021).

    Article  CAS  Google Scholar 

  31. Wang, H. et al. Electrochemical tuning of vertically aligned MoS2 nanofilms and its application in improving hydrogen evolution reaction. Proc. Natl Acad. Sci. USA 110, 19701–19706 (2013).

    Article  CAS  Google Scholar 

  32. Kwabena Bediako, D. et al. Heterointerface effects in the electrointercalation of van der Waals heterostructures. Nature 558, 425–429 (2018).

    Article  Google Scholar 

  33. Frank Zhao, S. et al. Controlled electrochemical intercalation of graphene/h-BN van der Waals heterostructures. Nano Lett. 18, 460–466 (2018).

    Article  Google Scholar 

  34. Delavignette, P. & Amelinckx, S. Dislocation patterns in graphite. J. Nucl. Mater. 5, 17–66 (1962).

    Article  Google Scholar 

  35. Williamson, G. K. Electron microscope studies of dislocation structures in graphite. Proc. R. Soc. Lond. A 257, 457–463 (1960).

    Article  CAS  Google Scholar 

  36. Hibino, H. et al. Microscopic thickness determination of thin graphite films formed on SiC from quantized oscillation in reflectivity of low-energy electrons. Phys. Rev. B 77, 075413 (2008).

    Article  Google Scholar 

  37. Fiori, S. et al. Li-intercalated graphene on SiC(0001): an STM study. Phys. Rev. B 96, 125429 (2017).

    Article  Google Scholar 

  38. Kresse, G. & Furthmüller, J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comp. Mater. Sci. 6, 15–50 (1996).

    Article  CAS  Google Scholar 

  39. Kresse, G. & Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 54, 11169 (1996).

    Article  CAS  Google Scholar 

  40. Perdew, J. P., Burke, K. & Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865–3868 (1996).

    Article  CAS  Google Scholar 

  41. Blöchl, P. E. Projector augmented-wave method. Phys. Rev. B 50, 17953 (1994).

    Article  Google Scholar 

  42. Grimme, S., Antony, J., Ehrlich, S. & Krieg, H. A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H–Pu. J. Chem. Phys. 132, 154104 (2010).

    Article  Google Scholar 

  43. Plimpton, S. Fast parallel algorithms for short-range molecular dynamics. J. Comput. Phys. 117, 1–19 (1995).

    Article  CAS  Google Scholar 

  44. Raju, M., Ganesh, P., Kent, P. R. & van Duin, A. C. Reactive force field study of Li/C systems for electrical energy storage. J. Chem. Theory Comput. 11, 2156–2166 (2015).

    Article  CAS  Google Scholar 

  45. Endo, Y. et al. Data Underlying the Paper: Dynamic Topological Domain Walls Driven by Lithium Intercalation in Graphene (ScienceDB, 2023); https://doi.org/10.57760/sciencedb.07810

Download references

Acknowledgements

We acknowledge R. M. Tromp and J. Jobst for the extensive discussion on the intercalation pathway in epitaxial graphene. We also thank H. Fukidome and N. Endoh for providing graphene samples at an early stage of this study. W.X.T. was supported by the NSFC as the National Key Instrumental Development Scheme (grant no. 0211002322010), the 985 Key National University Funding at Chongqing University (grant nos. 0211001104414 and 0211001104423) and Fundamental Research Funds for the Central Universities (grant no. 0903005203521). Y.E., R.A. and S.H. acknowledge support from the Japan Society for the Promotion of Science (JSPS) KAKENHI: a Grant-in-Aid for JSPS Fellows (grant no. 19J12818 to Y.E.); a Grant-in-Aid for Scientific Research (B) (grant no. 20H02616 to R.A.); and a Grant-in-Aid for Scientific Research (A) (grant no. 16H02108 to S.H.). J.Z.L. acknowledges support from the Australian Research Council Discovery Project (grant no. DP210103888). K.S.N. is grateful to the Ministry of Education, Singapore (Research Centre of Excellence award to the Institute for Functional Intelligent Materials, I-FIM, project no. EDUNC-33-18-279-V12), and to the Royal Society (UK, grant no. RSRP\R\190000) for support. The DFT calculations were undertaken with the assistance of resources and services from the National Computational Infrastructure (NCI), which is supported by the Australian Government. The molecular dynamics simulations were supported by resources provided by the Pawsey Supercomputing Research Centre with funding from the Australian Government and the Government of Western Australia.

Author information

Authors and Affiliations

Authors

Contributions

The experiment was designed by Y.E., R.A., S.H., J.Z.L. and W.X.T. Y.E. and M.L. performed the measurements and analysed the data. X.Y., C.B. and J.Z.L. developed theoretical models and performed calculations. M.L., W.W. and W.X.T. built the LEEM system. All of the authors contributed to the interpretation of the TDW’s evolution through discussion. Y.E., X.Y., M.L., R.A. and J.Z.L. wrote the paper with the input of C.B., R.H., S.H., K.S.N. and W.X.T.

Corresponding authors

Correspondence to Meng Li, Ryota Akiyama, Jefferson Zhe Liu or Wen-Xin Tang.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Nanotechnology thanks Jingshu Hui and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data

Extended Data Fig. 1 Stackings of graphene/SiC in simulation model.

(a) A slab model to simulate our sample, including SiC(0001) substrate, buffer layer, and one graphene top layer. The C3 and C4 atom are shown in the magnified picture, which represent buffer layer carbon atoms having 3 and 4 covalent bonds, respectively. (b)-(e) The different stacking order of a graphene layer on top of the buffer layer. (b) AA stacking; (c) AB stacking; (d) BA stacking; and (e) SP stacking. The blue, yellow, black, and red spheres represent Si atom, C atom in SiC bulk, C atom in buffer layer, and C atom in top graphene. Only the top bilayer SiC is shown. (f) The relative energy per C atom of AA, AB, BA, and SP stacking in the unit-cell of the 6√3 × 6√3R30° superstructure.

Supplementary information

Supplementary Information

Supplementary Information, Tables 1–6, Figs. 1–11, and captions for Extended Data Fig. 1 and Videos 1 and 2.

Supplementary Video 1

BF-LEEM movie of lithium intercalation process at room temperature with the incident electron energy of 3.3 eV (the snapshots were taken every 2 s).

Supplementary Video 2

BF-LEEM movie of lithium deintercalation process by heating at 100 °C with the incident electron energy of 3.3 eV (the snapshots were taken every 1.15 s).

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Endo, Y., Yan, X., Li, M. et al. Dynamic topological domain walls driven by lithium intercalation in graphene. Nat. Nanotechnol. 18, 1154–1161 (2023). https://doi.org/10.1038/s41565-023-01463-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41565-023-01463-7

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing