Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Matters Arising
  • Published:

Questions about the role of P3HT nanoparticles in retinal stimulation

Matters Arising to this article was published on 09 December 2021

The Original Article was published on 29 June 2020

This article has been updated

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Change history

  • 14 January 2022

    The version of this article originally published was a proof. It has now been replaced by the final version of the article.

References

  1. Maya-Vetencourt, J. F. et al. Subretinally injected semiconducting polymer nanoparticles rescue vision in a rat model of retinal dystrophy. Nat. Nanotechnol.15, 698–708 (2020).

    Article  CAS  Google Scholar 

  2. Delori, F. C., Webb, R. H. & Sliney, D. H. Maximum permissible exposures for ocular safety (ANSI 2000), with emphasis on ophthalmic devices. J. Opt. Soc. Am. A24, 1250–1265 (2007).

    Article  Google Scholar 

  3. American National Standard for Safe Use of Lasers ANSI Z136.1-2007 (American National Standards Institute, Inc., 2007).

  4. Feyen, P. et al. Light-evoked hyperpolarization and silencing of neurons by conjugated polymers. Sci. Rep.6, 22718 (2016).

    Article  CAS  Google Scholar 

  5. Hyun, N. G., Hyun, K. H., Lee, K. & Kaang, B. K. Temperature dependence of action potential parameters in Aplysia neurons. Neurosignals20, 252–264 (2012).

    Article  CAS  Google Scholar 

  6. Money, T. G., Anstey, M. L. & Robertson, R. M. Heat stress-mediated plasticity in a locust looming-sensitive visual interneuron. J. Neurophysiol.93, 1908–1919 (2005).

    Article  Google Scholar 

  7. Lorach, H. et al. Photovoltaic restoration of sight with high visual acuity. Nat. Med.21, 476–482 (2015).

    Article  CAS  Google Scholar 

  8. Mandel, Y. et al. Cortical responses elicited by photovoltaic subretinal prostheses exhibit similarities to visually evoked potentials. Nat. Commun.4, 1980 (2013).

    Article  Google Scholar 

  9. Corna, A., Herrmann, T. & Zeck, G. Electrode-size dependent thresholds in subretinal neuroprosthetic stimulation. J. Neural Eng.15, 045003 (2018).

    Article  Google Scholar 

  10. Daschner, R., Rothermel, A., Rudorf, R., Rudorf, S. & Stett, A. Functionality and performance of the subretinal implant chip Alpha AMS. Sensor Mater.30, 179–192 (2018).

    Article  Google Scholar 

  11. Mathieson, K. et al. Photovoltaic retinal prosthesis with high pixel density. Nat. Photon.6, 391–397 (2012).

    Article  CAS  Google Scholar 

  12. Ho, E. et al. Characteristics of prosthetic vision in rats with subretinal flat and pillar electrode arrays. J. Neural Eng.16, 066027 (2019).

    Article  Google Scholar 

  13. Chiguvare, Z., Parisi, J. & Dyakonov, V. Influence of thermal annealing on the electrical properties of poly(3-hexylthiophene)-based thin film diodes. Z. Naturforsch. A62, 609–619 (2007).

    Article  CAS  Google Scholar 

  14. Wei, R. B., Gryszel, M., Migliaccio, L. & Glowacki, E. D. Tuning photoelectrochemical performance of poly(3-hexylthiophene) electrodes via surface structuring. J. Mater. Chem. C8, 10897–10906 (2020).

    Article  CAS  Google Scholar 

  15. Sherwood, C. P. et al. Organic semiconductors for optically triggered neural interfacing: the impact of device architecture in determining response magnitude and polarity. IEEE J. Sel. Top. Quant. Elect.27, 1–12 (2021).

    Article  Google Scholar 

  16. Ferlauto, L. et al. Design and validation of a foldable and photovoltaic wide-field epiretinal prosthesis. Nat. Commun.9, 992 (2018).

    Article  Google Scholar 

  17. Werginz, P., Benav, H., Zrenner, E. & Rattay, F. Modeling the response of ON and OFF retinal bipolar cells during electric stimulation. Vision Res.111, 170–181 (2015).

    Article  CAS  Google Scholar 

  18. Lorach, H. et al. Interactions of prosthetic and natural vision in animals with local retinal degeneration. Invest. Ophthalmol. Vis. Sci.56, 7444–7450 (2015).

    Article  Google Scholar 

  19. Arens-Arad, T. et al. Cortical interactions between prosthetic and natural vision. Curr. Biol.30, 176–182 (2019).

    Article  Google Scholar 

  20. Maya-Vetencourt, J. F. et al. A fully organic retinal prosthesis restores vision in a rat model of degenerative blindness. Nat. Mater.16, 681 (2017).

    Article  CAS  Google Scholar 

  21. Chenais, N. A. L., Leccardi, M. & Ghezzi, D. Capacitive-like photovoltaic epiretinal stimulation enhances and narrows the network-mediated activity of retinal ganglion cells by recruiting the lateral inhibitory network. J. Neural Eng.16, 066009 (2019).

    Article  Google Scholar 

  22. Chenais, N. A. L., Leccardi, M. J. I. A. & Ghezzi, D. Photovoltaic retinal prosthesis restores high-resolution responses to single-pixel stimulation in blind retinas. Commun. Mater.2, 28 (2021).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

All the authors co-wrote the paper.

Corresponding author

Correspondence to Daniel Palanker.

Ethics declarations

Competing interests

D.P. is a consultant to Pixium Vision, a company that develops a photovoltaic retinal prosthesis. His patents about this technology are licensed to Pixium Vision by Stanford University. E.D.G. and D.G. declare no competing interests.

Additional information

Peer review informationNature Nanotechnology thanks the anonymous reviewers for their contribution to the peer review of this work.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Palanker, D., Głowacki, E.D. & Ghezzi, D. Questions about the role of P3HT nanoparticles in retinal stimulation. Nat. Nanotechnol. 16, 1330–1332 (2021). https://doi.org/10.1038/s41565-021-01044-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41565-021-01044-6

This article is cited by

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research