Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Note
  • Published:

Molecular dynamics simulation of the relationship between hydration and water mobilities around piperazine-immobilized polyvinyl alcohol membranes for CO2 capture

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  1. Baker RW. Future directions of membrane gas separation technology. Ind Eng Chem Res. 2002;41:1393–411.

    Article  CAS  Google Scholar 

  2. Baker RW, Lokhandwala K. Natural gas processing with membranes: An overview. Ind Eng Chem Res. 2008;47:2109–21.

    Article  CAS  Google Scholar 

  3. Du N, Park HB, Dal-Cin MM, Guiver MD. Advances in high permeability polymeric membrane materials for CO2 separations. Energy Environ Sci. 2012;5:7306–22.

    Article  CAS  Google Scholar 

  4. Ramasubramanian K, Zhao Y, Ho WSW. CO2 capture and H2 purification: Prospects for CO2-selective membrane processes. AIChE J. 2013;59:1033–45.

    Article  CAS  Google Scholar 

  5. Dai Z, Ansaloni L, Deng L. Recent advances in multi-layer composite polymeric membranes for CO2 separation: A review. Green Energy Environ. 2016;1:102–28.

    Article  Google Scholar 

  6. Wang S, Li X, Wu H, Tian Z, Xin Q, He G, et al. Advances in high permeability polymer-based membrane materials for CO2 separations. Energy Environ Sci. 2016;9:1863–90.

    Article  CAS  Google Scholar 

  7. Han Y, Ho WSW. Polymeric membranes for CO2 separation and capture. J Membr Sci. 2021;628:119244.

    Article  CAS  Google Scholar 

  8. Chuah CY, Goh K, Yang Y, Gong H, Li W, Karahan HE, et al. Harnessing filler materials for enhancing biogas separation membranes. Chem Rev. 2018;118:8655–69.

    Article  CAS  PubMed  Google Scholar 

  9. Taniguchi I, Duan S, Kai T, Kazama S, Jinnai H. Effect of the phase-separated structure on CO2 separation performance of the poly(amidoamine) dendrimer immobilized in a poly(ethylene glycol) network. J Mater Chem A. 2013;1:14514–23.

    Article  CAS  Google Scholar 

  10. Taniguchi I, Urai H, Kai T, Duan S, Kazama S. A CO2-selective molecular gate of poly(amidoamine) dendrimer immobilized in a poly(ethyleneglycol) network. J Membr Sci. 2013;444:96–100.

    Article  CAS  Google Scholar 

  11. Chen Y, Ho WSW. High-molecular-weight polyvinylamine/piperazine glycinate membranes for CO2 capture from flue gas. J Membr Sci. 2016;514:376–84.

    Article  CAS  Google Scholar 

  12. Wang J, Wang S, Xin Q, Li Y. Perspectives on water-facilitated CO2 capture materials. J Mater Chem A. 2017;5:6794–816.

    Article  Google Scholar 

  13. Vakharia V, Salim W, Wu D, Han Y, Chen Y, Zhao L, et al. Scale-up of amine-containing thin-film composite membranes for CO2 capture from flue gas. J Membr Sci. 2018;555:379–87.

    Article  CAS  Google Scholar 

  14. Salim W, Han Y, Vakharia V, Wu D, Wheeler DJ, Ho WSW. Scale-up of amine-containing membranes for hydrogen purification for fuel cells. J Membr Sci. 2019;573:465–75.

    Article  CAS  Google Scholar 

  15. Han Y, Wu D, Ho WSW. Simultaneous effects of temperature and vacuum and feed pressures on facilitated transport membrane for CO2/N2 separation. J Membr Sci. 2019;573:476–84.

    Article  CAS  Google Scholar 

  16. Yamada H. Amine-based capture of CO2 for utilization and storage. Polym J. 2021;53:93–102.

    Article  Google Scholar 

  17. Taniguchi I, Kinugasa K, Toyoda M, Minezaki K, Tanaka H, Mitsuhara K. Piperazine-immobilized polymeric membranes for CO2 capture mechanism of preferential CO2 permeation. Polym J. 2021;53:129–36.

    Article  Google Scholar 

  18. Kolle JM, Fayaz M, Sayari A. Understanding the effect of water on CO2 adsorption. Chem Rev. 2021;121:7280–345.

    Article  CAS  PubMed  Google Scholar 

  19. Li W, Xue F, Cheng R. States of water in partially swollen poly(vinyl alcohol) hydrogels. Polymer. 2005;46:12026–31.

    Article  CAS  Google Scholar 

  20. Li L, Ren L, Wang L, Liu S, Zhang Y, Tang L, et al. Effect of water state and polymer chain motion on the mechanical properties of a bacterial cellulose and polyvinyl alcohol (BC/PVA) hydrogel. RSC Adv. 2015;5:25525–31.

    Article  CAS  Google Scholar 

  21. Gun’ko VM, Savina IN, Mikhalovsky SV. Properties of water bound in hydrogels. Gels. 2017;3:37.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Nagumo R, Ito T, Akamatsu K, Miura R, Suzuki A, Tsuboi H, et al. Molecular dynamics simulations for microscopic behavior of water molecules in the vicinity of zwitterionic self-assembled monolayers. Polym J. 2012;44:1149–53.

    Article  CAS  Google Scholar 

  23. Nagumo R, Yamamoto K, Iwata S, Mori H. Estimation of the binding strengths of the ketone groups of vinyl pyrrolidone analogs to the surrounding solvent based on molecular dynamics simulations. J Chem Eng Jpn. 2019;52:1–7.

    Article  CAS  Google Scholar 

  24. Case DA, Belfon K, Ben-Shalom IY, Brozell SR, Cerutti DS, Cheatham III TE, et al. AMBER 2020. San Francisco: University of California; 2020.

  25. Nagumo R, Akamatsu K, Miura R, Suzuki A, Tsuboi H, Hatakeyama N, et al. Assessment of the antifouling properties of polyzwitterions from free energy calculations by molecular dynamics simulations. Ind Eng Chem Res. 2012;51:4458–62.

    Article  CAS  Google Scholar 

  26. Nagumo R, Terao S, Miyake T, Furukawa H, Iwata S, Mori H, et al. Theoretical screening of antifouling polymer repeat units by molecular dynamics simulations. Polym J. 2014;46:736–9.

    Article  CAS  Google Scholar 

  27. Shao Q, Jiang S. Influence of charged groups on the properties of zwitterionic moieties: A molecular simulation study. J Phys Chem B. 2014;118:7630–7.

    Article  CAS  PubMed  Google Scholar 

  28. Min SH, Kwak SK, Kim BS. Atomistic simulation for coil-to-globule transition of poly(2-dimethylaminoethyl methacrylate). Soft Matter. 2015;11:2423–33.

    Article  CAS  PubMed  Google Scholar 

  29. Nagumo R, Nishikawa K, Sato A, Ogita A, Iwata S. Molecular dynamics simulations of the folding structure of a thermoresponsive 2-dimethylaminoethyl methacrylate oligomer in the globule state. Polym J. 2023;55:85–93.

    Article  CAS  Google Scholar 

  30. Humphrey W, Dalke A, Schulten K. VMD: Visual molecular dynamics. J Mol Graph. 1996;14:33–8.

    Article  CAS  PubMed  Google Scholar 

  31. Borjigin T, Sun F, Zhang J, Cai K, Rena H, Zhu G. A microporous metal–organic framework with high stability for GC separation of alcohols from water. Chem Commun. 2012;48:7613–15.

    Article  CAS  Google Scholar 

  32. Ahmad R, Wong-Foy AG, Matzger AJ. Microporous coordination polymers as selective sorbents for liquid chromatography. Langmuir. 2009;25:11977–9.

    Article  CAS  PubMed  Google Scholar 

  33. Greathouse JA, Ockwig NW, Criscenti LJ, Guiilnger TR, Pohl P, Allendorf MD. Computational screening of metal–organic frameworks for large-molecule chemical sensing. Phys Chem Chem Phys. 2010;12:12621–9.

    Article  CAS  PubMed  Google Scholar 

  34. Mark P, Nilsson L. Structure and dynamics of the TIP3P, SPC, and SPC/E water models at 298 K. J Phys Chem A. 2001;105:9954–60.

    Article  CAS  Google Scholar 

  35. Holz M, Heil SR, Sacco A. Temperature-dependent self-diffusion coefficients of water and six selected molecular liquids for calibration in accurate 1H NMR PFG measurements. Phys Chem Chem Phys. 2000;2:4740–42.

    Article  CAS  Google Scholar 

  36. Nagumo R, Omori K, Muraki Y, Iwata S, Mori H, Yamada H. Correlation between macroscopic diffusion rates and microscopic interactions in ethylene glycol-based solvents. Ind Eng Chem Res. 2021;60:13368–76.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by a Research Grant for 2021 from the Amano Institute of Technology.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ryo Nagumo.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nagumo, R., Shibata, A., Taniguchi, I. et al. Molecular dynamics simulation of the relationship between hydration and water mobilities around piperazine-immobilized polyvinyl alcohol membranes for CO2 capture. Polym J (2024). https://doi.org/10.1038/s41428-024-00936-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41428-024-00936-3

Search

Quick links