Preparation of molecularly well-defined silicone resins based on trifluoropropyl-substituted trisilanol and their thermal, mechanical, and UV-resistance properties

Preparation of molecularly well-defined silicone resins based on trifluoropropyl-substituted trisilanol and their thermal, mechanical, and UV-resistance properties

Free-standing films of trifluoropropyl-substituted open-cage silsesquioxane-pendant polysiloxane were prepared by optimizing sol-gel reaction condition and showed good flexibility optical transparency

Announcements

Advertisement

  • Three cyclic oxoester-thioester hybrid monomers were studied for anionic and cationic ring-opening polymerizations. Anionic polymerizations using thiol with 2,6-lutidine were successful for the chemoselective cleavage of the thioester with the thiol propagating end, exhibiting the living character to some extent. The polymerization in 2,6-lutidine without an initiator produced macrocyclic polymers. The cationic polymerizations occurred with the aid of CF3SO3H and benzyl alcohol but involved side reactions with low chemoselective ring cleavage. The thioester unit caused the polymers to exhibit a lower Tg with greater thermal and photo degradability.

    • Mao Hirata
    • Tomoki Yoshimatsu
    • Masato Suzuki
    Original ArticleOpen Access
  • Doping lanthanides into lamellar crystals of diacetylene derivatives with terminal carboxylic acids reorganized the lamellar structure and dramatically changed the crystal morphology. Detailed investigation of the crystal growth process revealed that the complexes of lanthanide and diacetylene derivatives, which are slightly formed in the solution phase during lanthanide doping, may act as a pseudonuclear agent and change the morphology of the lamellar crystals. Furthermore, the morphology changes of the lamellar crystal films significantly altered surface properties such as film appearance and water repellency.

    • Michinari Kohri
    • Sojiro Isomura
    • Keiki Kishikawa
    Original ArticleOpen Access
  • Simple control of the thermoresponsive properties of polymers in water over a broad range is achieved by using a designed urethane-containing acrylamide monomer in combination with a hydroxy-containing precursor monomer, which forms a statistical sequence due to its similar backbone. The copolymers exhibited a lower critical solution temperature-type responsive behavior in water, and the effects of structural factors such as composition, molecular weight, end groups and side-chain structure in urethane monomers were systematically evaluated.

    • Shohei Ida
    • Ryu Hashiguchi
    • Shokyoku Kanaoka
    Original Article
  • Natural rubber exhibits the strain-induced crystallization (SIC). By using WAXD, the orientation of NR crystal formed by SIC under planar elongation was revisited. We found that the orientational state of the crystal lattice possesses a continuous margin of the orientation angle between 6.4 and 19.6° for the ac plane with respect to the surface of the specimen sheet in the real NR specimen. This orientational state could be accomplished as a result of balancing the preferential parallel orientation of (120) planes (the slip planes) and C = C planes with respect to the surface of the specimen sheet.

    • Ruito Tanaka
    • Tomohiro Yasui
    • Shinichi Sakurai
    Original Article
  • We synthesized a new benzobisthiazole (BBTz) containing building unit in which two alkoxythiophenes were attached to the BBTz moiety so as to induce oxygen–sulfur noncovalent intramolecular interactions and thereby interlock the linkage. As a result, the π-conjugated polymer incorporating the new building unit, PDBTz2, had a more coplanar and rigid backbone than the alkyl counterpart, PDBTz1. Interestingly, the backbone orientation was completely altered from the edge-on orientation (PDBTz1) to the face-on orientation (PDBTz2), which is preferable for organic photovoltaics. Accordingly, PDBTz2 showed a much higher photovoltaic performance than PDBTz1.

    • Shuhei Doi
    • Tsubasa Mikie
    • Itaru Osaka
    Original ArticleOpen Access
  • The surface properties of the star polymer coating were evaluated with their resistance to protein adsorption and surface zeta (ζ)-potential to clarify the mechanism for inhibition of cell adhesion. The surface of the star polymer coating with a high density of poly(2-hydroxyethyl methacrylate) formed an electrically neutral diffuse brush structure in water and showed high resistance to protein adsorption. Considering the data obtained in the study, the surface ζ-potential and antibiofouling properties were correlated by controlling the molecular architecture of the coating material.

    • Masayasu Totani
    • Hiroharu Ajiro
    • Tsuyoshi Ando
    Note
  • Developing fluorescence anion sensors is important because anions play a significant role in various biological phenomena. Herein, we evaluated the anion binding properties of a polyhedral oligomeric silsesquioxane (POSS) derivative with eight urea groups and a 3D structure. The results revealed that the POSS derivative with urea groups can bind to sulfate ions and exhibits a greater binding ability than that of the model compound because multiple urea groups exhibit cooperative effects. Through the introduction of naphthyl urea groups, the POSS derivative can be used as a fluorescence sensor for quantifying sulfate ions.

    • Hayato Narikiyo
    • Masayuki Gon
    • Yoshiki Chujo
    Original Article