Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Gate-controlled topological conducting channels in bilayer graphene

Abstract

The existence of inequivalent valleys K and K′ in the momentum space of 2D hexagonal lattices provides a new electronic degree of freedom, the manipulation of which can potentially lead to new types of electronics, analogous to the role played by electron spin1,2,3. In materials with broken inversion symmetry, such as an electrically gated bilayer graphene (BLG)4,5, the momentum-space Berry curvature Ω carries opposite sign in the K and K′ valleys. A sign reversal of Ω along an internal boundary of the sheet gives rise to counterpropagating 1D conducting modes encoded with opposite-valley indices. These metallic states are topologically protected against backscattering in the absence of valley-mixing scattering, and thus can carry current ballistically1,6,7,8,9,10,11. In BLG, the reversal of Ω can occur at the domain wall of AB- and BA-stacked domains12,13,14, or at the line junction of two oppositely gated regions6. The latter approach can provide a scalable platform to implement valleytronic operations, such as valves and waveguides9,15, but it is technically challenging to realize. Here, we fabricate a dual-split-gate structure in BLG and present evidence of the predicted metallic states in electrical transport. The metallic states possess a mean free path (MFP) of up to a few hundred nanometres in the absence of a magnetic field. The application of a perpendicular magnetic field suppresses the backscattering significantly and enables a junction 400 nm in length to exhibit conductance close to the ballistic limit of 4e2/h at 8 T. Our experiment paves the way to the realization of gate-controlled ballistic valley transport and the development of valleytronic applications in atomically thin materials.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Device structure and characterization.
Figure 2: Evidences of kink states.
Figure 3: Calculated band structure and conductance of the kink states.
Figure 4: Kink-state resistance in a magnetic field.

Similar content being viewed by others

References

  1. Xiao, D., Chang, M.-C. & Niu, Q. Berry phase effects on electronic properties. Rev. Mod. Phys. 82, 1959–2007 (2010).

    Article  CAS  Google Scholar 

  2. Xu, X., Yao, W., Xiao, D. & Heinz, T. F. Spin and pseudospins in layered transition metal dichalcogenides. Nat. Phys. 10, 343–350 (2014).

    Article  CAS  Google Scholar 

  3. Rycerz, A., Tworzydlo, J. & Beenakker, C. W. J. Valley filter and valley valve in graphene. Nat. Phys. 3, 172–175 (2007).

    Article  CAS  Google Scholar 

  4. McCann, E. & Koshino, M. The electronic properties of bilayer graphene. Rep. Prog. Phys. 76, 056503 (2013).

    Article  Google Scholar 

  5. Zou, K. & Zhu, J. Transport in gapped bilayer graphene: the role of potential fluctuations. Phys. Rev. B 82, 081407 (2010).

    Article  Google Scholar 

  6. Martin, I., Blanter, Y. M. & Morpurgo, A. F. Topological confinement in bilayer graphene. Phys. Rev. Lett. 100, 036804 (2008).

    Article  Google Scholar 

  7. Li, J., Morpurgo, A. F., Büttiker, M. & Martin, I. Marginality of bulk-edge correspondence for single-valley Hamiltonians. Phys. Rev. B 82, 245404 (2010).

    Article  Google Scholar 

  8. Jung, J., Zhang, F., Qiao, Z. & MacDonald, A. H. Valley-Hall kink and edge states in multilayer graphene. Phys. Rev. B 84, 075418 (2011).

    Article  Google Scholar 

  9. Qiao, Z., Jung, J., Niu, Q. & MacDonald, A. H. Electronic highways in bilayer graphene. Nano Lett. 11, 3453–3459 (2011).

    Article  CAS  Google Scholar 

  10. Zarenia, M., Pereira, J. M. Jr, Farias, G. A. & Peeters, F. M. Chiral states in bilayer graphene: magnetic field dependence and gap opening. Phys. Rev. B 84, 125451 (2011).

    Article  Google Scholar 

  11. Zhang, F., MacDonald, A. H. & Mele, E. J. Valley Chern numbers and boundary modes in gapped bilayer graphene. Proc. Natl Acad. Sci. USA 110, 10546–10551 (2013).

    Article  CAS  Google Scholar 

  12. Alden, J. S. et al. Strain solitons and topological defects in bilayer graphene. Proc. Natl Acad. Sci. USA 110, 11256–11260 (2013).

    Article  CAS  Google Scholar 

  13. Vaezi, A., Liang, Y., Ngai, D. H., Yang, L. & Kim, E.-A. Topological edge states at a tilt boundary in gated multilayer graphene. Phys. Rev. X 3, 021018 (2013).

    Google Scholar 

  14. Ju, L. et al. Topological valley transport at bilayer graphene domain walls. Nature 520, 650–655 (2015).

    Article  CAS  Google Scholar 

  15. Qiao, Z. et al. Current partition at topological channel intersections. Phys. Rev. Lett. 112, 206601 (2014).

    Article  Google Scholar 

  16. Yao, W., Xiao, D. & Niu, Q. Valley-dependent optoelectronics from inversion symmetry breaking. Phys. Rev. B 77, 235406 (2008).

    Article  Google Scholar 

  17. Mak, K. F., McGill, K. L., Park, J. & McEuen, P. L. The valley Hall effect in MoS2 transistors. Science 344, 1489–1492 (2014).

    Article  CAS  Google Scholar 

  18. Gorbachev, R. V. et al. Detecting topological currents in graphene superlattices. Science 346, 448–451 (2014).

    Article  CAS  Google Scholar 

  19. Shimazaki, Y., Yamamato, M., Borzenets, I. V., Watanabe, K., Taniguchi, T. & Tarucha, S . Generation and detection of pure valley current by electrically induced Berry curvature in bilayer graphene. Nat. Phys. 11, 1032–1036 (2015).

    Article  CAS  Google Scholar 

  20. Sui, M. et al. Gate-tunable topological valley transport in bilayer graphene. Nat. Phys. 11, 1027–1031 (2015).

    Article  CAS  Google Scholar 

  21. Li, J., Martin, I., Buttiker, M. & Morpurgo, A. F. Topological origin of subgap conductance in insulating bilayer graphene. Nat. Phys. 7, 38–42 (2011).

    Article  CAS  Google Scholar 

  22. Dean, C. R. et al. Boron nitride substrates for high-quality graphene electronics. Nat. Nanotech. 5, 722–726 (2010).

    Article  CAS  Google Scholar 

  23. Datta, S. Electronic Transport in Mesoscopic Systems (Cambridge Univ. Press, 1997).

    Google Scholar 

  24. Engels, S. et al. Limitations to carrier mobility and phase-coherent transport in bilayer graphene. Phys. Rev. Lett. 113, 126801 (2014).

    Article  CAS  Google Scholar 

  25. Stabile, A. A., Ferreira, A., Li, J., Peres, N. M. R. & Zhu, J. Electrically tunable resonant scattering in fluorinated bilayer graphene. Phys. Rev. B 92, 121411 (2015).

    Article  Google Scholar 

  26. Koenig, M. et al. Quantum spin Hall insulator state in HgTe quantum wells. Science 318, 766–770 (2007).

    Article  CAS  Google Scholar 

  27. Maciejko, J. et al. Kondo effect in the helical edge liquid of the quantum spin Hall state. Phys. Rev. Lett. 102, 256803 (2009).

    Article  Google Scholar 

  28. Law, K. T., Seng, C. Y., Lee, P. A. & Ng, T. K. Quantum dot in a two-dimensional topological insulator: the two-channel Kondo fixed point. Phys. Rev. B 81, 041305 (2010).

    Article  Google Scholar 

  29. Väyrynen, J. I., Goldstein, M. & Glazman, L. I. Helical edge resistance introduced by charge puddles. Phys. Rev. Lett. 110, 216402 (2013).

    Article  Google Scholar 

  30. Väyrynen, J. I., Goldstein, M., Gefen, Y. & Glazman, L. I. Resistance of helical edges formed in a semiconductor heterostructure. Phys. Rev. B 90, 115309 (2014).

    Article  Google Scholar 

  31. Mazio, V, Shimshoni, E, Huang, C.-W., Carr, S. T. & Fertig, H. A. Helical quantum Hall edge modes in bilayer graphene: a realization of quantum spin-ladders. Phys. Scripta T165, 014019 (2015).

    Article  Google Scholar 

  32. Recher, P., Nilsson, J., Burkard, G. & Trauzettel, B. Bound states and magnetic field induced valley splitting in gate-tunable graphene quantum dots. Phys. Rev. B 79, 085407 (2009).

    Article  Google Scholar 

  33. Abanin, D. A. & Levitov, L. S. Quantized transport in graphene p–n junctions in a magnetic field. Science 317, 641–643 (2007).

    Article  CAS  Google Scholar 

  34. Zhu, J. Transport in bilayer and trilayer graphene: band gap engineering and band structure tuning. APS March Meeting http://meetings.aps.org/link/BAPS.2014.MAR.B30.1 (2014).

  35. Garcia, A. G. F. et al. Effective cleaning of hexagonal boron nitride for graphene devices. Nano Lett. 12, 4449–4454 (2012).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

J.L., Z.Z. and J.Z. are supported by the Office of Naval Research under grant no. N00014-11-1-0730 and by the National Science Foundation (NSF) grant no. DMR-1506212. K.J.M. was supported by the NSF National Nanofabrication Infrastructure Network (NNIN) Research Experience for Undergraduates Program in 2013. K. Wang, Y.R. and Z.Q. are supported by the China Government Youth 1000-Plan Talent Program, the Fundamental Research Funds for the Central Universities (grant nos WK3510000001 and WK2030020027), the National Natural Science Foundation of China (grant no. 11474265) and the National Key R&D Program (grant no. 2016YFA0301700). K. Watanabe and T.T. are supported by the Elemental Strategy Initiative conducted by MEXT, Japan, and a Grant-in-Aid for Scientific Research on Innovative Areas ‘Science of Atomic Layers’ from Japan Society for the Promotion of Science (JSPS). T.T. is also supported by a Grant-in-Aid for Scientific Research on Innovative Areas ‘Nano Informatics’ (grant no. 25106006) from JSPS. Part of this work was performed at the National High Magnetic Field Laboratory (NHMFL), which was supported by NSF through NSF-DMR-0084173 and the State of Florida. The Supercomputing Center of the University of Science and Technology of China is acknowledged for the high-performance computing assistance. The authors acknowledge the use of facilities at the Pennsylvania State University site of NSF NNIN. We are grateful for helpful discussions with R. Du, H. Fertig, D. Goldhaber-Gordon, W. Halperin, S. Ilani, J. Jain, E. Kim, C. Liu, X. Li, A. H. MacDonald, Q. Niu, A. Paramekanti and A. Young. We thank J. Jaroszynski of the NHMFL for experimental assistance.

Author information

Authors and Affiliations

Authors

Contributions

J.Z. and J.L. conceived the experiment. J.L. designed and fabricated the devices and made the measurements. K.J.M. assisted in optimizing the procedure used to fabricate the bottom split gates. J.L. and Z.Z. performed the COMSOL simulations. J.L. and J.Z. analysed the data. K. Wang, Y.R. and Z.Q. did the theoretical calculations. K. Watanabe and T.T. synthesized the h-BN crystals. J.L., J.Z., K. Wang, Y.R. and Z.Q. wrote the manuscript with input from all authors.

Corresponding authors

Correspondence to Zhenhua Qiao or Jun Zhu.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 2158 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, J., Wang, K., McFaul, K. et al. Gate-controlled topological conducting channels in bilayer graphene. Nature Nanotech 11, 1060–1065 (2016). https://doi.org/10.1038/nnano.2016.158

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nnano.2016.158

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing