Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

A microcavity-controlled, current-driven, on-chip nanotube emitter at infrared wavelengths

Abstract

Recent studies of the optical properties of semiconducting single-walled carbon nanotubes1,2,3,4,5,6 suggest that these truly nanometre-scale systems have a promising future in nanophotonics, in addition to their well-known potential in electronics7,8. Semiconducting single-walled nanotubes have a direct, diameter-dependent bandgap8 and can be excited readily by current injection, which makes them attractive as nano-emitters. The electroluminescence is spectrally broad, spatially non-directional, and the radiative yield is low5,9. Here we report the monolithic integration of a single, electrically excited, semiconducting nanotube transistor with a planar λ/2 microcavity10,11,12,13, thus taking an important first step in the development of nanotube-based nanophotonic devices. The spectral full-width at half-maximum of the emission is reduced from 300 to 40 nm at a cavity resonance of 1.75 µm, and the emission becomes highly directional. The maximum enhancement of the radiative rate is estimated to be 4. We also show that both the optically and electrically excited luminescence of single-walled nanotubes involve the same E11 excitonic transition.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Schematic view of the integrated device and its electronic properties.
Figure 2: Carbon nanotube characterization and emission mechanism identification.
Figure 3: Microcavity-controlled electroluminescence spectra of carbon nanotubes.
Figure 4: Angle dependence of the microcavity-controlled emission.

Similar content being viewed by others

References

  1. O'Connell, M. J. et al. Bandgap fluorescence from individual single-walled carbon nanotubes. Science 297, 593–596 (2002).

    Article  CAS  Google Scholar 

  2. Bachilo, S. M. et al. Structure-assigned optical spectra of single-walled carbon nanotubes. Science 298, 2361–2366 (2002).

    Article  CAS  Google Scholar 

  3. Misewich, J. A. et al. Electrically induced optical emission from a carbon nanotube FET. Science 300, 783–786 (2003).

    Article  CAS  Google Scholar 

  4. Freitag, M. et al. Mobile ambipolar domain in carbon-nanotube infrared emitters. Phys. Rev. Lett. 93, 076803 (2004).

    Article  Google Scholar 

  5. Chen, J. et al. Bright infrared emission from electrically induced excitons in carbon nanotubes. Science 310, 1171–1174 (2005).

    Article  CAS  Google Scholar 

  6. Freitag, M., Martin, Y., Misewich, J. A., Martel, R. & Avouris, P. Photoconductivity of single carbon nanotubes. Nano Lett. 3, 1067–1071 (2003).

    Article  CAS  Google Scholar 

  7. Avouris, P., Chen, Z. & Perebeinos, V. Carbon-based electronics. Nature Nanotech. 2, 605–615 (2007).

    Article  CAS  Google Scholar 

  8. Biercuk, M. J., Ilani, S., Marcus, C. M. & McEuen, P. L. in Carbon Nanotubes: Advanced Topics in the Synthesis, Structure, Properties and Applications (eds Jorio, A., Dresselhaus, M. S. & Dresselhaus, G.) (Springer, Berlin, 2008).

    Google Scholar 

  9. Marty, L. et al. Exciton formation and annihilation during 1D impact excitation of carbon nanotubes. Phys. Rev. Lett. 96, 136803 (2006).

    Article  CAS  Google Scholar 

  10. Brorson, S. D., Yokoyama, H. & Ippen, E. Spontaneous emission rate alteration in optical waveguide structures. IEEE J. Quantum Electron. 26, 1492–1499 (1990).

    Article  CAS  Google Scholar 

  11. Yamamoto, Y., Machida, S. & Bjork, G. Micro-cavity semiconductor lasers with controlled spontaneous emission. Opt. Quantum Electron. 24, S215–S243 (1992).

    Article  CAS  Google Scholar 

  12. Björk, G. On the spontaneous lifetime change in an ideal planar microcavity-transition from a mode continuum to quantized modes. IEEE J. Quantum Electron. 30, 2314–2318 (1994).

    Article  Google Scholar 

  13. Abram, I., Robert, I. & Kuszelewicz, R. Spontaneous emission control in semiconductor microcavities with metallic or Bragg mirrors. IEEE J. Quantum Electron. 34, 71–76 (1998).

    Article  CAS  Google Scholar 

  14. Yuan, Z. et al. Electrically driven single-photon source. Science 295, 102–105 (2002).

    Article  CAS  Google Scholar 

  15. Steiner, M., Qian, H., Hartschuh, A. & Meixner, A. J. Controlling non-equilibrium phonon populations in single-walled carbon nanotubes. Nano Lett. 8, 2239–2242 (2007).

    Article  Google Scholar 

  16. Vahala, K. J. Optical microcavities. Nature 424, 839–846 (2003).

    Article  CAS  Google Scholar 

  17. Steiner, M. et al. Microcavity-controlled single-molecule fluorescence. ChemPhysChem 6, 2190–2196 (2005).

    Article  CAS  Google Scholar 

  18. Xia, F., Sekaric, L. & Vlasov, Y. A. Ultra-compact optical buffers on a silicon chip. Nature Photon. 1, 65–71 (2007).

    Article  CAS  Google Scholar 

  19. Tans, S. J., Verscheuren, A. R. M. & Dekker, C. Room-temperature transistor based on a single carbon nanotube. Nature 393, 49–52 (1998).

    Article  CAS  Google Scholar 

  20. Martel, R., Schmidt, T., Shea, H. R., Hertel, T. & Avouris, P. Single- and multi-wall carbon nanotube field-effect transistors. Appl. Phys. Lett. 73, 2447–2449 (1998).

    Article  CAS  Google Scholar 

  21. Martel, R. et al. Ambipolar electrical transport in semiconducting single-wall carbon nanotubes. Phys. Rev. Lett. 87, 256805 (2001).

    Article  CAS  Google Scholar 

  22. Heinze, S. et al. Carbon nanotubes as Schottky barrier transistors. Phys. Rev. Lett. 89, 106801 (2002).

    Article  CAS  Google Scholar 

  23. Dresselhaus, M. S., Dresselhaus, G., Saito, R. & Jorio, A. Raman spectroscopy of carbon nanotubes. Phys. Rep. 409, 47–99 (2005).

    Article  Google Scholar 

  24. Perebeinos, V. & Avouris, P. Impact excitation by hot carriers in carbon nanotubes. Phys. Rev. B 74, 121410R (2006).

    Article  Google Scholar 

  25. McGuire, D. L. & Pulfrey, D. L. A multi-scale model for mobile and localized electroluminescence in carbon nanotube field-effect transistors. Nanotechnology 17, 5805–5811 (2006).

    Article  CAS  Google Scholar 

  26. Weisman, R. B. & Bachilo, S. M. Dependence of optical transition energies on structure for single-walled carbon nanotubes in aqueous suspension: an empirical Kataura plot. Nano Lett. 3, 1235–1238 (2003).

    Article  CAS  Google Scholar 

  27. Lefebvre, J., Austing, D. G., Bond, J. & Finnie, P. Photoluminescence imaging of suspended single-walled carbon nanotubes. Nano Lett. 6, 1603–1608 (2006).

    Article  CAS  Google Scholar 

  28. Song, B. S., Noda, S., Asano, T. & Akahane, Y. Ultra-high-Q photonic double-heterostructure nanocavity. Nature Mater. 4, 207–210 (2005).

    Article  CAS  Google Scholar 

  29. Noda, S. Seeking the ultimate nanolaser. Science 314, 260–261 (2006).

    Article  CAS  Google Scholar 

  30. Murakami, Y. & Kono, J. Nonlinear photoluminescence excitation spectroscopy of carbon nanotubes: exploring the upper density limit of one-dimensional excitons. Preprint at http://arxiv.org/abs/0804.3190 (2008).

Download references

Acknowledgements

The authors thank M. Freitag, Z. Chen, Yu. A. Vlasov, S. Assefa and W. G. Green for helpful discussions, J. Tsang and M. Kinoshita for help with the emission spectra measurements, J. Small for help with the cavity Q measurement, B. Ek for technical support and Central Scientific Services in IBM Thomas J. Watson Research Center for metal deposition and mask fabrications.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Fengnian Xia or Phaedon Avouris.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Xia, F., Steiner, M., Lin, Ym. et al. A microcavity-controlled, current-driven, on-chip nanotube emitter at infrared wavelengths. Nature Nanotech 3, 609–613 (2008). https://doi.org/10.1038/nnano.2008.241

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nnano.2008.241

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing