Physical sciences articles within Nature Communications

Featured

  • Article |

    The controllable modification of graphene by chemical functionalization can modulate its optical and electronic properties. Sunet al. devise a functionalisation-based method to pattern graphane/graphene superlattices within a single sheet of graphene.

    • Zhengzong Sun
    • , Cary L. Pint
    •  & James M. Tour
  • Article |

    Charge density waves in the structure and electron density of layered materials are closely linked to superconductivity. Using scanning tunnelling techniques, Rahnejatet al. demonstrate the occurrence of such waves in the doped graphene sheets of the superconductor CaC6.

    • K.C. Rahnejat
    • , C.A. Howard
    •  & M. Ellerby
  • Article
    | Open Access

    As quantum information processing continues to develop apace, the need for integrated photonic devices becomes ever greater for both fundamental measurements and technological applications. To this end, Crespiet al.demonstrate a high-fidelity photonic controlled-NOT gate on a glass chip.

    • Andrea Crespi
    • , Roberta Ramponi
    •  & Paolo Mataloni
  • Article |

    Magnetoelectric materials combine ferroelectric and magnetic properties through a coupling of the spin and lattice degrees of freedom. Here, magnetoelectric bismuth ferrite is found to simultaneously undergo both a magnetic and a ferroelectric transition at the same temperature.

    • Kyung-Tae Ko
    • , Min Hwa Jung
    •  & Chan-Ho Yang
  • Article |

    Dissociation of ice into an ionic solid is rare due to the high energy cost of proton transfer. In this study, structure search simulation is used to predict the formation of a partially ionic phase in ice at low temperature and high pressure, which consists of coupled alternate layers of hydroxide and hydronium.

    • Yanchao Wang
    • , Hanyu Liu
    •  & Yanming Ma
  • Article
    | Open Access

    When two spatially separated parties flip a coin, it is impossible to choose between two alternatives in an unbiased manner. This study presents a quantum coin-flipping protocol that overcomes this problem and ensures a dishonest party cannot bias the outcome completely.

    • Guido Berlín
    • , Gilles Brassard
    •  & Wolfgang Tittel
  • Article
    | Open Access

    Tunnelling transitions triggered by microwave irradiation between coupled quantum dots have generally been assumed to be spin-conserving. This study shows that this condition is violated in the presence of spin–orbit coupling, thus opening new possibilities for manipulating a two–spin qubit system by microwave irradiation.

    • L.R. Schreiber
    • , F.R. Braakman
    •  & L.M.K. Vandersypen
  • Article |

    Generation of multipartite entanglement between quantum states is crucial for developing quantum computation systems, although it has proven harder to achieve for photons than ions. Here, an eight-photon entangled state based on four independent photon pairs is observed, beating the previous record of six.

    • Yun-Feng Huang
    • , Bi-Heng Liu
    •  & Guang-Can Guo
  • Article |

    Batteries that operate at high power and cycling efficiencies could facilitate the development of large-scale energy storage systems. Wessellset al.report a metal–organic framework electrode that operates in an inexpensive aqueous electrolyte with excellent capacity retention over a very large number of cycles.

    • Colin D. Wessells
    • , Robert A. Huggins
    •  & Yi Cui
  • Article
    | Open Access

    External electric fields have been used to control the motion of small objects through electrostatic repulsion. Here, electric fields are used to polarize conducting objects, triggering their movement by spatially separated electrochemical reactions leading to directionally controlled bubble evolution.

    • Gabriel Loget
    •  & Alexander Kuhn
  • Article
    | Open Access

    Most quantum communication experiments are performed at visible wavelengths, yet practical, long-range schemes need photons in the telecommunications range. Here, down-conversion of a visible photon to the near-infrared is demonstrated, while retaining its entanglement to another visible photon.

    • Rikizo Ikuta
    • , Yoshiaki Kusaka
    •  & Nobuyuki Imoto
  • Article
    | Open Access

    Covalent organic frameworks form a porous skeleton with a precise pore size and geometry, but control of the pore surface is challenging. Here, a protocol is introduced for pore surface engineering of covalent organic frameworks, allowing the control of composition and density of organic groups in the pores.

    • Atsushi Nagai
    • , Zhaoqi Guo
    •  & Donglin Jiang
  • Article |

    DNA nanotubes could be used to transport nano-cargo and incorporated into nano-devices. In this study, rolling circle amplification is used to generate DNA subunits, and their thermodynamic growth results in the formation of nanotubes with a controlled diameter.

    • Ofer I. Wilner
    • , Ron Orbach
    •  & Itamar Willner
  • Article |

    The miniaturization of optical devices is crucial for their on-chip integration with a variety of technological applications. Here, Liuet al. present an ultracompact beam splitter to control the direction of light through the generation of surface plasmon polaritons.

    • John S.Q. Liu
    • , Ragip A. Pala
    •  & Mark L. Brongersma
  • Article |

    Leaves and tissues contain three-dimensional networks of fluidic channels, but similar artificial self-assembling systems have not yet been produced. Jamalet al. develop methods to produce three-dimensional microfluidic networks with curved geometries from the self-assembly of photopatterned polymers.

    • Mustapha Jamal
    • , Aasiyeh M. Zarafshar
    •  & David H. Gracias
  • Article
    | Open Access

    Controlling the magnetic properties of nanoparticles is important to enable their widespread use in applications. Antoniaket al. combine X-ray absorption spectroscopy and density functional theory calculations to uncover the origin of these properties in order to appropriately tailor nanoparticle design.

    • Carolin Antoniak
    • , Markus E. Gruner
    •  & Heiko Wende
  • Article |

    Graphene may be used in nanoscale electronics and devices, but the ability to synthesise uniform graphene with well-controlled layer numbers is necessary for these applications. Using a Ni–Mo alloy, this study demonstrates single-layer graphene growth with 100% surface coverage and tolerance to variations in growth conditions.

    • Boya Dai
    • , Lei Fu
    •  & Zhongfan Liu
  • Article |

    Surface characterization of soft materialsin situis challenging due to the importance of non-covalent interactions. Now, a new chemical imaging method is reported that generates images of surface interactions by combining many molecular probe trajectories.

    • Robert Walder
    • , Nathaniel Nelson
    •  & Daniel K. Schwartz
  • Article |

    Advanced rechargeable lithium-ion batteries have potential applications in the renewable energy and sustainable road transport fields. Junget al. have developed a lithium battery that uses pre-existing concepts but has highly competitive energy densities, life span and cycling properties.

    • Hun-Gi Jung
    • , Min Woo Jang
    •  & Bruno Scrosati
  • Article
    | Open Access

    Magnetostriction—the property that causes ferromagnetic materials to change shape during the process of magnetization—has a range of technological applications. Here, by varying the presence of structural disorder in textured Co1-xFexfilms, unusually strong magnetostrictive properties are presented.

    • Dwight Hunter
    • , Will Osborn
    •  & Ichiro Takeuchi
  • Article
    | Open Access

    Stimulus-responsive hydrogels have previously been developed that display heat-, light-, pH- or redox-induced sol–gel transitions. Nakahataet al. develop a self-healing supramolecular hydrogel based on host–guest polymers in which redox potential can induce a reversible sol–gel phase transition.

    • Masaki Nakahata
    • , Yoshinori Takashima
    •  & Akira Harada
  • Article |

    Intercalating alkali metals into picene—a hydrocarbon with five linearly fused benzene rings—results in superconducting materials. Now, alkali-metal-doped phenanthrene, which consists of three fused benzene rings, is also found to be superconducting, opening up a broader class of organic superconductors.

    • X.F. Wang
    • , R.H. Liu
    •  & X.H. Chen
  • Article
    | Open Access

    In the theory of general relativity time flows at different rates depending on the space–time geometry. Here, a drop in the visibility of a quantum 'clock' interference in a gravitational potential is predicted, which cannot be explained without the general relativistic notion of time.

    • Magdalena Zych
    • , Fabio Costa
    •  & Časlav Brukner
  • Article |

    Nanofluidic diodes are utilized for the rectification of ionic transport, but their rectifying properties cannot be altered after the devices are made. Here, a field-effect reconfigurable nanofluidic diode is reported in which the forward direction and the degree of rectification can be modulated by a gate voltage.

    • Weihua Guan
    • , Rong Fan
    •  & Mark A. Reed
  • Article |

    Hoop-shaped aromatic hydrocarbons can be considered as finite models of single-wall carbon nanotubes. Hitosugiet al. describe the bottom-up synthesis of a macrocyclic tetramer of chrysene, and show that its persistent rotational isomers are finite models of chiral nanotubes.

    • Shunpei Hitosugi
    • , Waka Nakanishi
    •  & Hiroyuki Isobe
  • Article |

    Molecular probes that can detect aqueous sulphides could help to elucidate their roles in biological signalling. Qianet al. develop two sulphide-selective fluorescent probes and demonstrate their ability to image free sulphide in living cells.

    • Yong Qian
    • , Jason Karpus
    •  & Chuan He
  • Article |

    The ability to control the charge and spin of single molecules at metal interfaces underpins the concept of molecular electronics. Mugarzaet al. examine these properties using scanning tunnelling microscopy, and uncover their influence on the magnetism and transport properties of the molecule/metal systems.

    • Aitor Mugarza
    • , Cornelius Krull
    •  & Pietro Gambardella
  • Article |

    Simple routes to self-assembling magnetic materials are elusive. Tew and colleagues produce copolymers containing cobalt complexes, which phase separate to give ferromagnetic properties at room temperature following heat treatment.

    • Zoha M. AL-Badri
    • , Raghavendra R. Maddikeri
    •  & Gregory N. Tew
  • Article
    | Open Access

    Nanocrystals are used in light-emitting diodes and solar cells, but their charge transport in films is unclear. Here, the study of PbS nanocrystal films reveals the role of mid-gap states in their charge transport, suggesting different design needs for devices operated in dark (transistors) versus light (solar cells) conditions.

    • Prashant Nagpal
    •  & Victor I. Klimov
  • Article
    | Open Access

    Advanced biofuels with comparable properties to petroleum-based fuels could be microbially produced from lignocellulosic biomass. In this study,Escherichia coliis engineered to produce bisabolene, the immediate precursor of bisabolane, a biosynthetic alternative to D2 diesel.

    • Pamela P. Peralta-Yahya
    • , Mario Ouellet
    •  & Taek Soon Lee
  • Article
    | Open Access

    Spin ices are magnetic materials in which excitations equivalent to monopoles can occur. Using high-pressure techniques, Zhouet al. synthesize a new member of the spin ice family, Dy2Ge2O7, in which monopoles exist at higher densities, and can stabilize as dimers.

    • H.D. Zhou
    • , S.T. Bramwell
    •  & J.S. Gardner
  • Article |

    Quasi-three-dimensional plasmonic crystals have potential uses in miniaturized photonics. In this study, a method is described to enhance plasmonic resonance in the crystals by coupling them to optical modes of Fabry–Perot type cavities, with possible applications in photonic and sensor components.

    • Debashis Chanda
    • , Kazuki Shigeta
    •  & John A. Rogers
  • Article
    | Open Access

    Plasmon resonances occur as collective excitations of surface electrons in noble metal nanoparticles. This study presents a new way of manipulating their behaviour by creating bimetallic dimers which, as a result of their asymmetric composition, give rise to unusual optical properties.

    • Timur Shegai
    • , Si Chen
    •  & Mikael Käll
  • Article |

    The manipulation of electrons forms the basis of modern technology, whereas electrical signalling processes in nature are based on ions and protons. Rolandi and colleagues present a proton transistor based on polysaccharide nanofibres, which can control the flow of protonic currents.

    • Chao Zhong
    • , Yingxin Deng
    •  & Marco Rolandi
  • Article
    | Open Access

    Inertial sensors using atom interferometry have applications in geophysics, navigation- and space-based tests of fundamental physics. Here, the first operation of an atom accelerometer during parabolic flights is reported, demonstrating high-resolution measurements at both 1g and 0g.

    • R. Geiger
    • , V. Ménoret
    •  & P. Bouyer
  • Article
    | Open Access

    Transparent conducting oxides are wide bandgap conductors that have found a range of applications in optoelectronic devices. In this study, Hosono and colleagues fabricate the first transparent conducting oxide based on germanium.

    • Hiroshi Mizoguchi
    • , Toshio Kamiya
    •  & Hideo Hosono
  • Article |

    Plasmonic nanostructures can be used to manipulate objects larger than the wavelength of light but create thermal heating. In this work, the trapping and controlled rotation of nanoparticles is demonstrated using a plasmonic nanotweezer with a heat sink, predicting a reduction in heating compared with previous designs.

    • Kai Wang
    • , Ethan Schonbrun
    •  & Kenneth B. Crozier