Physical sciences articles within Nature Communications

Featured

  • Article
    | Open Access

    The realization of wafer-scale graphene electronics is envisaged to open up the route to the use of graphene in mainstream electronics. Hertelet al.take a step in this direction by fabricating a transistor with a SiC channel and graphene electrodes, with excellent performance up to megahertz frequencies.

    • S. Hertel
    • , D. Waldmann
    •  & H.B. Weber
  • Article |

    Molecular systems with rigid macrocyclic backbones self-assemble into synthetic nanopores that mimic the mass-transport characteristics of biological channels. Zhouet al. produce self-assembling hydrophobic nanopores that mediate highly selective transmembrane ion transport and highly efficient transmembrane water permeability.

    • Xibin Zhou
    • , Guande Liu
    •  & Bing Gong
  • Article
    | Open Access

    Downsizing antennas to the nanoscale is a promising way to manipulate light emission from fluorescent sources. Bussonet al. used a short DNA strand to position a lone fluorescent molecule between two gold particles with nanometre resolution, achieving enhanced decay rates and single photon emission.

    • Mickaël P. Busson
    • , Brice Rolly
    •  & Sébastien Bidault
  • Article
    | Open Access

    Quantum communication promises important advances in information and communication technology, yet it suffers from alignment sensitivity. Here, an alignment-free approach is demonstrated using liquid crystal devices, allowing for broader applications, including satellites.

    • Vincenzo D'Ambrosio
    • , Eleonora Nagali
    •  & Fabio Sciarrino
  • Article |

    Vortex–charge duality is a model that has been proposed for describing the superconducting to insulator transition in disordered thin films. Mehtaet al. report experimental evidence for this duality in the two-dimensional electron gas that arises in LaAlO3/SrTiO3heterostructures.

    • M.M. Mehta
    • , D.A. Dikin
    •  & V. Chandrasekhar
  • Article |

    X-ray free-electron lasers offer a wealth of possibilities for future diffraction studies, but variations in successive pulses mean the wavefront is not well defined. Rutishauseret al. use grating interferometry to characterize the wavefronts shot to shot, both in situand under operating conditions.

    • Simon Rutishauser
    • , Liubov Samoylova
    •  & Christian David
  • Article
    | Open Access

    The iron pnictides are a class of superconductors that have received widespread interest in recent years. By doping the prototypical material LaFeAsO with hydrogen, this study reveals the existence of a second superconducting dome at higher doping ranges, which arises due to orbital fluctuations.

    • Soshi Iimura
    • , Satoru Matsuishi
    •  & Hideo Hosono
  • Article |

    Chiral metamaterials present interesting ways to manipulate and distinguish between different circular polarizations of light. Zhanget al. realize chiral metamaterials that exhibit photoinduced switching between left- and right-handed circular polarization interactions at terahertz frequencies.

    • Shuang Zhang
    • , Jiangfeng Zhou
    •  & Xiang Zhang
  • Article |

    Single electron pumps have been proposed as potential candidates for redefining the ampere. This study reports measurements of the quantized current flowing through a semiconductor electron pump with a precision that makes a substantial step towards establishing a direct metric for electrical currents.

    • S.P. Giblin
    • , M. Kataoka
    •  & D.A. Ritchie
  • Article |

    The ability to manipulate single charges is a key requisite for novel nanoelectronic devices. Allenet al. show how to electrostatically confine electrons in suspended bilayer graphene quantum dots by local control of the graphene band structure.

    • M. T. Allen
    • , J. Martin
    •  & A. Yacoby
  • Article |

    The SrTiO3/LaAlO3 system is widely studied because it forms a two-dimensional electron gas at the interface. This study investigates the effects of diluting the LaAlO3 layer with SrTiO3, and finds that the threshold thickness required for the onset of conductivity scales inversely with the fraction of LaAlO3, suggesting an intrinsic origin for the electron gas.

    • M.L. Reinle-Schmitt
    • , C. Cancellieri
    •  & P.R. Willmott
  • Article
    | Open Access

    Switches made up of single molecules form the basis for the concept of molecular electronics. Miyamachiet al.demonstrate that an iron-based spin crossover molecule can be switched between different spin states, provided it is decoupled from a metallic substrate by a thin insulating layer.

    • Toshio Miyamachi
    • , Manuel Gruber
    •  & Wulf Wulfhekel
  • Article |

    Absorption imaging relies on the capture of photons by an object to create intensity contrasts, allowing for the visualization of small quantum systems. Streedet al. demonstrate the first absorption imaging of an isolated ytterbium ion, with contrast at the limit of semiclassical theory.

    • Erik W. Streed
    • , Andreas Jechow
    •  & David Kielpinski
  • Article |

    The crystallization of a racemate on a surface can lead to crystals with a unit cell containing both enantiomers, or to the separation of enantiomers into crystals of single-handedness. This study shows that manganese co-absorbed with a quinone derivative leads to achiral islands, while co-absorption with caesium gives chiral islands.

    • Nasiba Abdurakhmanova
    • , Andrea Floris
    •  & Klaus Kern
  • Article |

    Scanning probe microscopy and related techniques rely on the availability of very sharp tips. Here, a sharpening technique based on field-directed sputtering is demonstrated, resulting in ultrasharp metallic tips for use in scanning tunnelling microscopy as well as atomic-scale lithographic experiments.

    • S.W. Schmucker
    • , N. Kumar
    •  & J.W. Lyding
  • Article |

    Controlling nuclear spin patterns is important to manage decoherence and control electron spin currents in spintronic devices. This study demonstrates the optical creation of rewritable patterns of nuclear polarization in gallium arsenide without ferromagnets, lithographic patterning or field gradients.

    • Jonathan P. King
    • , Yunpu Li
    •  & Jeffrey A. Reimer
  • Article |

    The interface within heterostructures consisting of LaAlO3 and SrTiO3 has been reported to give rise to magnetism, in addition to a two-dimensional electron gas. Kalisky et al. observe that magnetism can occur only above a critical thickness, and that it occurs in heterogeneous patches.

    • Beena Kalisky
    • , Julie A. Bert
    •  & Kathryn A. Moler
  • Article |

    Stretchable electronics based on conducting polymers offer new opportunities for designing flexible technologies. Parket al. build three-dimensional nanostructures from elastomers soaked with liquid metal to produce stretchable conductors with greatly improved strain properties over solid films.

    • Junyong Park
    • , Shuodao Wang
    •  & Seokwoo Jeon
  • Article
    | Open Access

    Fluorescence imaging is important for biomedical research and applications, but the turbidity of biological material prohibits deep tissue study. By combining ultrasound-encoding with digital time-reversal, Wanget al.perform focussed fluorescence imaging at a tissue depth of 2.5mm.

    • Ying Min Wang
    • , Benjamin Judkewitz
    •  & Changhuei Yang
  • Article
    | Open Access

    Understanding localization and delocalization phenomena is important for studying wave propagation in many types of disordered photonic systems. Here, a theoretical study of one-dimensional photonic crystal structures reveals the importance of Fano interference in wave transport in the presence of disorder.

    • Alexander N. Poddubny
    • , Mikhail V. Rybin
    •  & Yuri S. Kivshar
  • Article
    | Open Access

    Graphene's remarkable properties make it ideal for optoelectronic devices, and its two-dimensional nature enables its integration with photonic structures. By combining a graphene transistor with a planar microcavity, Engelet al. control the spectrum of the photocurrent and the light emitted by the device.

    • Michael Engel
    • , Mathias Steiner
    •  & Ralph Krupke
  • Article |

    Spin ice is a state of matter that occurs in certain rare earth magnets with a pyrochlore structure. Here it is shown theoretically that, in conjunction with the magnetic monopoles observed in previous experiments, spin ice can also host electric dipoles.

    • D.I. Khomskii
  • Article
    | Open Access

    Nanocrystal quantum dots can exhibit photoluminescence blinking, where the intensity of the emitted light fluctuates due to random charging and discharging. Gallandet al.study thick shell nanocrystals and find that the photoluminescence lifetime can also undergo blinking, without intensity changes.

    • Christophe Galland
    • , Yagnaseni Ghosh
    •  & Victor I. Klimov
  • Article
    | Open Access

    Magnetometers based on organic magnetoresistance are limited by narrow sensitivity ranges, degradation and temperature fluctuations. Bakeret al. demonstrate a magnetic resonance-based organic thin film magnetometer, which overcomes these drawbacks by exploiting the metrological nature of magnetic resonance.

    • W.J. Baker
    • , K. Ambal
    •  & C. Boehme
  • Article
    | Open Access

    Ultrasmall clusters of atoms form the building blocks of many nanoscale materials. Using a combination of aberration-corrected transmission electron microscopy and numerical simulations, this study uncovers the geometry of these clusters in three dimensions.

    • S. Bals
    • , S. Van Aert
    •  & G. Van Tendeloo
  • Article
    | Open Access

    Understanding hydrogen diffusion in metals is a challenge because of limited access to spatial evolution of the concentration profiles. Using time- and spatially resolved optical measurements, Palssonet al. determine the diffusion rate of hydrogen by directly monitoring its transit through a vanadium thin film.

    • Gunnar K. Pálsson
    • , Andreas Bliersbach
    •  & Björgvin Hjörvarsson
  • Article |

    Nitrogen-doped fullerenes and carbon nanotubes have been produced, but the synthesis of nitrogen-doped buckybowls, is an unsolved challenge. Tanet al. report an enantioselective synthesis of triazasumanene, and show that nitrogen doping leads to deeper bowl structures than in all-carbon buckybowls.

    • Qitao Tan
    • , Shuhei Higashibayashi
    •  & Hidehiro Sakurai
  • Article |

    Ink-jet printing methods are an attractive approach to nanofabrication, where electrohydrodynamic control allows for flexible and cheap fabrication. Here, a new approach is presented using electrostatic nanodroplet autofocussing to produce high aspect ratio nanoscale structures like plasmonic nanoantennas.

    • P. Galliker
    • , J. Schneider
    •  & D. Poulikakos
  • Article
    | Open Access

    High-intensity laser-plasma ion generation is promising as a compact proton source for applications like ion beam therapy. Using a femtosecond table-top laser system, Zeilet al. show that protons efficiently gain energy in the pre-thermal intra-pulse phase of the generation process.

    • K. Zeil
    • , J. Metzkes
    •  & U. Schramm
  • Article |

    Devices made up of nanowires offer promise for a range of electronic, photonic and energy applications. Liuet al. fabricate a miniature capacitor by employing a thin layer of Cu2O as a separator between layers of carbon and copper.

    • Zheng Liu
    • , Yongjie Zhan
    •  & Pulickel M. Ajayan
  • Article |

    Topological phases are unusual states of matter whose properties are robust against small perturbations. Using a photonic quantum walk system, Kitagawaet al. simulate one-dimensional topological phases and reveal novel topological phenomena far from the static or adiabatic regimes.

    • Takuya Kitagawa
    • , Matthew A. Broome
    •  & Andrew G. White
  • Article
    | Open Access

    The monolayer transition-metal dichalcogenide molybdenum disulphide has recently attracted attention owing to its distinctive electronic properties. Cao and co-workers present numerical evidence suggesting that circularly polarized light can preferentially excite a single valley in the band structure of this system.

    • Ting Cao
    • , Gang Wang
    •  & Ji Feng
  • Article |

    Geometrically frustrated spin systems are a class of statistical mechanical models that have received widespread attention, especially in condensed matter physics. This study experimentally demonstrates a quantum information processor that can simulate the behaviour of such frustrated spin system.

    • Jingfu Zhang
    • , Man-Hong Yung
    •  & Jonathan Baugh
  • Article
    | Open Access

    Metamaterial lenses enable super-resolution imaging of structures, beating the diffraction limit. Lemoultet al. propose a resonant metalens based on plasmonic nanorods that uses polychromatic light to achieve sub-diffraction limit focusing and imaging in the visible spectral region.

    • Fabrice Lemoult
    • , Mathias Fink
    •  & Geoffroy Lerosey
  • Article |

    Thed orbitals of transition metal compounds influence their crystallographic and physical properties. This study reports a unique structural transition in single crystals of the S=1/2 kagomé antiferromagnet, volborthite, whereby an unpaired electron 'switches' from one dorbital to another upon cooling.

    • Hiroyuki Yoshida
    • , Jun-ichi Yamaura
    •  & Zenji Hiroi
  • Article |

    Three-dimensional optical metamaterials provide a range of exciting features, such as broadband circular dichroism, yet their fabrication is challenging. Here, a broadband optical circular polarizer is presented based on twisted stacks of metasurfaces, avoiding the issues of three-dimensional fabrication.

    • Y. Zhao
    • , M.A. Belkin
    •  & A. Alù
  • Article
    | Open Access

    Fibre-optic waveguides are used to provide timing delays for different sensing and signal processing applications, but their transfer to on-chip platforms is a challenge. Here low-loss delay lines based on whispering-gallery spiral waveguides up to 27 m long are produced, presenting a scalable alternative.

    • Hansuek Lee
    • , Tong Chen
    •  & Kerry J. Vahala
  • Article |

    σ-Complexes of transition metals are key intermediates in metal-mediated bond activation, but have traditionally been isolable only when chelating or when one of the participating atoms is hydrogen. Here, a complex is isolated with an unsupported borirene ligand bound not through the unsaturated C=C bond, but exclusively via a B–C single bond.

    • Holger Braunschweig
    • , Peter Brenner
    •  & Alfredo Vargas
  • Article |

    Transistors based on ions, as opposed to electrons, offer the promise of bridging the gap between technological and biological systems. Tybrandtet al. present logic gates based on ion bipolar junction transistors that operate at concentrations compatible with biological systems.

    • Klas Tybrandt
    • , Robert Forchheimer
    •  & Magnus Berggren
  • Article |

    Methods to study the structure of complex networks often rely on case-sensitive parameters that have limited applications. In this study, a new method—link salience—is used to classify network elements based on a consensus estimate of all nodes, finding generic topological features in many empirical networks.

    • Daniel Grady
    • , Christian Thiemann
    •  & Dirk Brockmann