Graphene articles within Nature

Featured

  • Letter |

    Electron microscopy has advanced to the stage where individual elements can be identified with atomic resolution. Here it is shown to be possible to get fine-structure spectroscopic information of individual light atoms such as those of carbon, and so also probe their chemical state. This capability is illustrated by investigating the edges of a graphene sample, where it is possible to discriminate between single-, double- and triple-coordinated carbon atoms.

    • Kazu Suenaga
    •  & Masanori Koshino
  • News |

    Critics say that explanation of the 2010 award in physics slights other contributions to graphene research.

    • Eugenie Samuel Reich
  • Letter |

    The past few years have seen a spectacular growth of interest in graphene. Efforts to produce large sheets of monolayer (or few-layer) graphene could receive a welcome boost from the simple procedure reported by these authors. They show how baking various solid carbon sources (for example polymer films) deposited on a metal catalyst substrate can produce either pristine graphene or doped graphene in a single step.

    • Zhengzong Sun
    • , Zheng Yan
    •  & James M. Tour
  • Letter |

    In graphene, two particular sets of electrons exist that have a fourfold energy degeneracy. To study the corresponding four quantum states comprising a Landau level, these authors perform measurements on epitaxial graphene at 10 millikelvin. They take spectral 'fingerprints' of the Landau levels, showing in detail how they evolve with magnetic field and how they split into the four separate quantum states. They also observe states with Landau level filling factors of 7/2, 9/2 and 11/2.

    • Young Jae Song
    • , Alexander F. Otte
    •  & Joseph A. Stroscio
  • News & Views |

    Tiny holes have been drilled through individual layers of graphene — atomically thin sheets of carbon — using an electron beam. These nanopores might be useful for the ultrarapid sequencing of single DNA molecules.

    • Hagan Bayley
  • Letter |

    There is much interest in graphene for applications in ultrahigh-speed radio-frequency electronics, but conventional device fabrication processes lead to significant defects in graphene. Here a new way of fabricating high-speed graphene transistors is described. A nanowire with a metallic core and insulating shell is placed as the gate electrode on top of graphene, and source and drain electrodes are deposited through a self-alignment process, causing no appreciable damage to the graphene lattice.

    • Lei Liao
    • , Yung-Chen Lin
    •  & Xiangfeng Duan
  • Letter |

    Graphene is highly electronically conducting across the plane of the material. These authors show that a graphene membrane separating two ionic solutions in electrical contact is strongly ionically insulating despite being atomically thin and has in-plane electronic properties dependent on the interfacial environment. Numerical modelling reveals that very high spatial resolution is possible using this system, and the researchers propose that drilled membranes could form the basis of DNA sequencing devices.

    • S. Garaj
    • , W. Hubbard
    •  & J. A. Golovchenko
  • Letter |

    Graphene nanoribbons (GNRs) have structure-dependent electronic properties that make them attractive for the fabrication of nanoscale electronic devices, but exploiting this potential has been hindered by the lack of precise production methods. Here the authors demonstrate how to reliably produce different GNRs, using precursor monomers that encode the structure of the targeted nanoribbon and are converted into GNRs by means of surface-assisted coupling.

    • Jinming Cai
    • , Pascal Ruffieux
    •  & Roman Fasel
  • News |

    Atomically thin carbon sheets offer bacteria a protective shell in electron microscopes.

    • Geoff Brumfiel
  • Letter |

    It is widely accepted that strong and variable radiation detected over all accessible energy bands in a number of active galaxies arises from a relativistic, Doppler-boosted jet pointing close to our line of sight. However, the size of the emitting zone and the location of this region relative to the central supermassive black hole are poorly understood. Here, the coincidence of a γ-ray flare with a dramatic change of optical polarization angle is reported, providing evidence for co-spatiality of optical and γ-ray emission regions and indicating a highly ordered jet magnetic field.

    • A. A. Abdo
    • , M. Ackermann
    •  & M. Sikora