Mechanical and structural properties and devices articles within Nature

Featured

  • Article |

    Nano-Raman spectroscopy reveals localization of some vibrational modes in reconstructed twisted bilayer graphene and provides qualitative insights into how electron–phonon coupling affects the vibrational and electronic properties of the material.

    • Andreij C. Gadelha
    • , Douglas A. A. Ohlberg
    •  & Ado Jorio
  • Letter |

    Atomistic simulations reproduce experimental observations of transient frictional strengthening of graphene on an amorphous silicon substrate, an effect which diminishes as the number of graphene layers increases.

    • Suzhi Li
    • , Qunyang Li
    •  & Ju Li
  • Letter |

    The ratio of in-plane stiffness to out-of-plane bending stiffness of graphene is shown to be similar to that of a piece of paper, which allows ideas from kirigami (a variation of origami that allows cutting) to be applied to micrometre-scale graphene sheets to build mechanically stretchable yet robust electrodes, springs and hinges.

    • Melina K. Blees
    • , Arthur W. Barnard
    •  & Paul L. McEuen
  • Letter |

    Basal-plane dislocations, identified as fundamental defects in bilayer graphene by transmission electron microscopy and atomistic simulations, reveal striking size effects, most notably a pronounced buckling of the graphene membrane, which drastically alters the strain state and is of key importance for the material’s mechanical and electronic properties.

    • Benjamin Butz
    • , Christian Dolle
    •  & Erdmann Spiecker