Electronic properties and devices articles within Nature

Featured

  • Article |

    A magnetic-field-induced Wigner crystal in Bernal-stacked bilayer graphene was directly imaged using high-resolution scanning tunnelling microscopy and its structural properties as a function of electron density, magnetic field and temperature were examined.

    • Yen-Chen Tsui
    • , Minhao He
    •  & Ali Yazdani
  • Article |

    Integer and fractional quantum anomalous Hall effects in a rhombohedral pentalayer graphene–hBN moiré superlattice are observed, providing an ideal platform for exploring charge fractionalization and (non-Abelian) anyonic braiding at zero magnetic field.

    • Zhengguang Lu
    • , Tonghang Han
    •  & Long Ju
  • Article
    | Open Access

    Vectorial optoelectronic metasurfaces are described, showing that light pulses can be used to drive and direct local charge flows around symmetry-broken plasmonic nanostructures, leading to tunable responses in terahertz emission.

    • Jacob Pettine
    • , Prashant Padmanabhan
    •  & Hou-Tong Chen
  • Article
    | Open Access

    Imaging of quantum oscillations in Bernal-stacked trilayer graphene with dual gates enables high-precision reconstruction of the highly tunable bands and reveals naturally occurring pseudomagnetic fields as low as 1 mT corresponding to graphene twisting by 1 millidegree.

    • Haibiao Zhou
    • , Nadav Auerbach
    •  & Eli Zeldov
  • Article |

    A miniaturized narrow-channel in-plane electrochemical capacitor shows drastically reduced ionic resistances within both the electrode material and the electrolyte and an ultrahigh areal capacitance by downscaling the channel width with femtosecond-laser scribing.

    • Yajie Hu
    • , Mingmao Wu
    •  & Liangti Qu
  • Article |

    Orbital multiferroicity reported in pentalayer rhombohedral graphene features ferro-orbital-magnetism and ferro-valleytricity, both of which can be controlled by an electric field.

    • Tonghang Han
    • , Zhengguang Lu
    •  & Long Ju
  • Article
    | Open Access

    A Dirac plasma in high-mobility graphene shows anomalous magnetotransport and giant magnetoresistance that reaches more than 100 per cent in a low magnetic field at room temperature.

    • Na Xin
    • , James Lourembam
    •  & Alexey I. Berdyugin
  • Article |

    Three tunable quantum Hall broken-symmetry states in charge-neutral graphene are identified by visualizing their lattice-scale order with scanning tunnelling microscopy and spectroscopy.

    • Alexis Coissard
    • , David Wander
    •  & Benjamin Sacépé
  • Article |

    Decoupling spin-polarized edge states using substitutional N-atom dopants along the edges of a zigzag graphene nanoribbon (ZGNR) reveals giant spin splitting of a N-dopant edge state, and supports the predicted emergent magnetic order in ZGNRs.

    • Raymond E. Blackwell
    • , Fangzhou Zhao
    •  & Felix R. Fischer
  • Article |

    Superconductivity is observed in rhombohedral trilayer graphene in the absence of a moiré superlattice, with two distinct superconducting states both occurring at a symmetry-breaking transition where the Fermi surface degeneracy changes.

    • Haoxin Zhou
    • , Tian Xie
    •  & Andrea F. Young
  • Article |

    A study shows that rhombohedral graphene is an ideal platform for well-controlled tests of many-body theory and reveals that magnetism in moiré materials is fundamentally itinerant in nature.

    • Haoxin Zhou
    • , Tian Xie
    •  & Andrea F. Young
  • Article |

    Nanoscale imaging of edge currents in charge-neutral graphene shows that charge accumulation can explain various exotic nonlocal transport measurements, bringing into question some theories about their origins.

    • A. Aharon-Steinberg
    • , A. Marguerite
    •  & E. Zeldov
  • Article |

    Non-volatile electrical switching of magnetic order in an orbital Chern insulator is experimentally demonstrated using a moiré heterostructure and analysis shows that the effect is driven by topological edge states.

    • H. Polshyn
    • , J. Zhu
    •  & A. F. Young
  • Article |

    An ultimately thin microwave bolometric sensor based on a superconductor–graphene–superconductor Josephson junction with monolayer graphene has a sensitivity approaching the fundamental limit imposed by intrinsic thermal fluctuations.

    • Gil-Ho Lee
    • , Dmitri K. Efetov
    •  & Kin Chung Fong
  • Article |

    Tuning the electronic interactions by changing the dielectric environment of twisted bilayer graphene reveals the disappearance of the insulating states and their replacement by superconducting phases, suggesting a competition between the two phases.

    • Petr Stepanov
    • , Ipsita Das
    •  & Dmitri K. Efetov
  • Article |

    The emergence of a liquid-like electronic flow from ballistic flow in graphene is imaged, and an almost-ideal viscous hydrodynamic fluid of electrons exhibiting a parabolic Poiseuille flow profile is observed.

    • Joseph A. Sulpizio
    • , Lior Ella
    •  & Shahal Ilani
  • Article |

    Imaging studies show that topological protection in the quantum Hall state in graphene is undermined by edge reconstruction with a dissipation mechanism that comprises two distinct and spatially separated processes—work generation and entropy generation.

    • A. Marguerite
    • , J. Birkbeck
    •  & E. Zeldov
  • Letter |

    A cryogenic thermal imaging technique that uses a superconducting quantum interference device fabricated on the tip of a sharp pipette can be used to image the thermal signature of extremely low power nanometre-scale dissipation processes.

    • D. Halbertal
    • , J. Cuppens
    •  & E. Zeldov
  • Letter |

    In graphene nanoribbons of ‘zigzag’ edge orientation, the edges host unpaired electron spins that couple to generate long-range magnetic order (switching from antiferromagnetic to ferromagnetic inter-edge configuration as the ribbon width increases) under ambient conditions, enhancing the prospects for graphene-based spintronic devices.

    • Gábor Zsolt Magda
    • , Xiaozhan Jin
    •  & Levente Tapasztó
  • Letter |

    Nanoribbons of graphene grown on electronics-grade silicon carbide conduct electrons much better than expected; at room temperature, the charge carriers travel through the nanoribbons without scattering for a surprisingly long distance, more than ten micrometres.

    • Jens Baringhaus
    • , Ming Ruan
    •  & Walt A. de Heer
  • Letter |

    Placing graphene on a boron nitride substrate and accurately aligning their crystallographic axes, to form a moiré superlattice, leads to profound changes in the graphene’s electronic spectrum.

    • L. A. Ponomarenko
    • , R. V. Gorbachev
    •  & A. K. Geim
  • Outlook |

    The same property that gives stained glass windows their sublime beauty is being crafted in the latest nanophotonic technologies, says Anatoly V. Zayats.

    • Anatoly V. Zayats
  • News |

    The 3D ‘monoliths’ — grown between forming ice crystals — add elasticity to the super-strength and conductivity of graphene sheets.

    • James Mitchell Crow
  • Outlook |

    Trying to shoehorn graphene into a digital circuit isn't working. But there may be another potential path to glory.

    • Katherine Bourzac
  • Outlook |

    Nature Outlook talks to the first director of the MIT's Centre for Graphene Devices and Systems, which was created in July 2011 to foster collaboration among academic, industrial and government groups studying this form of carbon.

    • Tomás Palacios