Collection 

Epigenome Roadmap

Welcome to the Epigenome Roadmap! Here, we have collected research papers describing the main findings of the NIH Roadmap Epigenomics Program, the aim of which was to systematically characterize epigenomic landscapes in primary human tissues and cells. The papers are complemented by eight threads each of which highlights a topic that runs through more than one paper. Threads are designed to help you explore the wealth of information collectively published across several Nature Research journals. Each thread consists of relevant paragraphs, figures and tables from across the papers, united around a specific theme.

We invite you to explore the research content, the News & Views, the video and other associated material.

 

Additional research which has received the NIH Roadmap Epigenomics funding

 

Nature

Ziller et al. Charting a dynamic DNA methylation landscape of the human genome. Nature 500, 477-81 (2013)
(doi:10.1038/nature12433)

Jin F, et al. A high-resolution map of the three-dimensional chromatin interactome in human cells. Nature 503, 290-4 (2013)
(doi:10.1038/nature12644)

Smith ZD, et alDNA methylation dynamics of the human preimplantation embryo. Nature 511, 611-5 (2014) 
(doi:10.1038/nature13581)

Cheng, Y. et al. Principles of regulatory information conservation between mouse and human. Nature 515, 371-375 (2014)
(doi:10.1038/nature13985)

Nature Biotechnology

Selvaraj S, et al. Whole-genome haplotype reconstruction using proximity-ligation and shotgun sequencing. Nat Biotechnol. 31, 1111-8 (2013)
(doi:10.1038/nbt.2728)

Nature Cell Biology

Kang S, et al. Identification of nuclear hormone receptor pathways causing insulin resistance by transcriptional and epigenomic analysis.  Nat Cell Biol. 17, 44-56 (2015)
(doi:10.1038/ncb3080)

Nature Chemical Biology

James LI, et al. Discovery of a chemical probe for the L3MBTL3 methyllysine reader domain. Nat Chem Biol. 9, 184-91 (2013)
(doi:10.1038/nchembio.1157)

Nature Communications

Zhang L, et al. Tet-mediated covalent labelling of 5-methylcytosine for its genome-wide detection and sequencing. Nat Commun. 4:1517 (2013)
(doi:10.1038/ncomms2527)

Nature Genetics

Xie M, et al. DNA hypomethylation within specific transposable element families associates with tissue-specific enhancer landscape. Nat Genet. 45, 836-41 (2013)
(doi:10.1038/ng.2649)

Nature Methods

Diep D, et al. Library-free methylation sequencing with bisulfite padlock probesNat Methods 5, 270-2 (2012) 
(doi:10.1038/nmeth.1871)

Zhou, X, et al. Exploring long-range genome interaction data using the WashU Epigenome Browser. Nat Methods 10, 375-376 (2013)
(doi:10.1038/nmeth.2440)

Hattori T., et al. Recombinant antibodies to histone post-translational modifications. Nat Methods 10, 992–995 (2013) 
(doi:10.1038/nmeth.2605)

Kasinathan, S., et al. High-resolution mapping of transcription factor binding sites on native chromatin. Nat Methods 11, 203-9 (2014) 
(doi:10.1038/nmeth.2766)

Tome, J.M., et al.  Comprehensive analysis of RNA-protein interactions by high-throughput sequencing-RNA affinity profiling. Nat Methods 11, 683-8 (2014) 
(doi:10.1038/nmeth.2970)

Nature Protocols

Yu M, et al.  Tet-assisted bisulfite sequencing of 5-hydroxymethylcytosine. Nat Protoc. 7, 2159-70 (2012)
(doi: 10.1038/nprot.2012.137)

Nature Reviews Genetics

Mill, J., Heijmans, B.T. From promises to practical strategies in epigenetic epidemiology. Nat Rev Genet. 14, 585-94 (2013)
(doi:10.1038/nrg3405)

Nature Structural and Molecular Biology

Khare T, et al. 5-hmC in the brain is abundant in synaptic genes and shows differences at the exon-intron boundary. Nat Struct Mol Biol. 19, 1037-43 (2012)
(doi:10.1038/nsmb.2372)

Science

Maurano MT, et al. Systematic localization of common disease-associated variation in regulatory DNA. Science 337, 1190-5 (2012) 
(doi:10.1126/science.1222794)

Cell

Clowney, E.J., et al. Nuclear aggregation of olfactory receptor genes governs their monogenic expression. Cell 151, 724-37 (2012) 
(doi:10.1016/j.cell.2012.09.043)

Yu, M., et al. Base-resolution analysis of 5-hydroxymethylcytosine in the mammalian genome. Cell 149, 1368-80 (2012)
(doi:10.1016/j.cell.2012.04.027)

Chaffer, C.L., et al. Poised Chromatin at the ZEB1 Promoter Enables Breast Cancer Cell Plasticity and Enhances Tumorigenicity. Cell 154, 61-74 (2013)  (doi:10.1016/j.cell.2013.06.005)

Loven, J., et al. Selective inhibition of tumor oncogenes by disruption of super-enhancers. Cell 153, 320-34 (2013) 
(doi:10.1016/j.cell.2013.03.036)

Whyte, W.A., et al. Master transcription factors and mediator establish super-enhancers at key cell identity genes. Cell 153, 307-19 (2013) 
(doi:10.1016/j.cell.2013.03.035)

Zhu, J., et al. Genome-wide chromatin state transitions associated with developmental and environmental cues. Cell 152, 642-54 (2013) 
(doi:10.1016/j.cell.2012.12.033)

Stergachis, A.B., et al. Developmental fate and cellular maturity encoded in human regulatory DNA landscapes. Cell 154, 888-903 (2013)
(doi:10.1016/j.cell.2013.07.020)

Hnisz D, et al. Super-enhancers in the control of cell identity and disease. Cell 155, 934-47 (2013) 
(doi:10.1016/j.cell.2013.09.053)

Xie et al. Epigenomic analysis of multilineage differentiation of human embryonic stem cells. Cell 153, 1134–1148 (2013)
(doi:10.1016/j.cell.2013.04.022)

Gifford, C.A.,  et al. Transcriptional and epigenetic dynamics during specification of human embryonic stem cells. Cell 153, 1149-63 (2013)
(doi:10.1016/j.cell.2013.04.037)

Markenscoff-Papadimitriou, E., et al. Enhancer interaction networks as a means for singular olfactory receptor expression. Cell 159, 543-57 (2014) 
(doi:10.1016/j.cell.2014.09.033)

Genome Research

Zhang, B., et al. Functional DNA methylation differences between tissues, cell types, and across individuals discovered using the M&M algorithm. Genome Res. 23, 1522-40 (2013)
(doi:10.1101/gr.156539.113)

Stevens, M., et al. Estimating absolute methylation levels at single CpG resolution from methylation enrichment and restriction enzyme sequencing methods. Genome Res. 23, 1541-53 (2013)
(doi:10.1101/gr.152231.112)

Nagarajan, R.P., et al. Recurrent epimutations activate gene body promoters in primary glioblastoma. Genome Res. 24, 761-74 (2014)
(doi:10.1101/gr.164707.113)

Genome Biology

Davies, M.N., et al. Functional annotation of the human brain methylome identifies tissue-specific epigenetic variation across brain and blood. Genome Biol. 13, R43( 2012)
(doi:10.1186/gb-2012-13-6-r43)

Pidsley, R., et al. Methylomic profiling of human brain tissue supports a neurodevelopmental origin for schizophrenia. Genome Biol. 15, 483 (2014)
(doi:10.1186/s13059-014-0483-2)

Journal of Clinical Investigation

Santagata, S., et al. Taxonomy of breast cancer based on normal cell phenotype predicts outcome.  J Clin Invest. 124, 859-70 (2014). 
(doi:10.1172/JCI70941)

Human Molecular Genetics

Liu, Y., et al. Methylomics of gene expression in human monocytes. Hum Mol Genet 24, 5065-74 (2013)
(doi:10.1093/hmg/ddt356)

BMC Genomics

Pidsley, R., et al. A data-driven approach to preprocessing Illumina 450K methylation array data. 
BMC Genomics. 14:293 (2013)
(doi:10.1186/1471-2164-14-293)

Zhang, B., et al. Comparative DNA methylome analysis of endometrioid adenocarcinoma, uterine papillary serous carcinoma, and normal endometrium. BMC Genomics 15:868 (2014)
(doi:10.1186/1471-2164-15-868)

Genome Medicine

Whitaker, J.W., et al. An imprinted rheumatoid arthritis methylome signature reflects pathogenic phenotype. Genome Medicine 5: 40 (2013) ​(doi:10.1186/gm444)

PLoS Genetics

Berko, E.R., et al. Mosaic epigenetic dysregulation of ectodermal cells in autism spectrum disorder. PLoS Genet. 10(5):e1004402 (2014)
(doi:10.1371/journal.pgen.1004402)

Lim, A.S., et al. 24-hour rhythms of DNA methylation and their relation with rhythms of RNA expression in the human dorsolateral prefrontal cortex. PLoS Genet. 10(11):e1004792 (2014)
(doi:10.1371/journal.pgen.1004792)

Nucleic Acid Research

Zhu, Y., et al. Predicting enhancer transcription and activity from chromatin modifications. Nucleic Acids Research. 41: 10032-10043 (2013)
(doi:10.1093/nar/gkt826)

Bioinformatics

Wu, J., et al. SpliceTrap: a method to quantify alternative splicing under single cellular conditions. Bioinformatics 27: 3010-3016 (2011)
(doi:10.1093/bioinformatics/btr508)

Wang, T., et al. STAR: An Integrated Solution to Management and Visualization of Sequencing Data. Bioinformatics. 29:3204-3210 (2013)
(doi:10.1093/bioinformatics/btt558)

Zhou, X., et al. methylC Track: visual integration of single-base resolution DNA methylation data on the WashU EpiGenome Browser. Bioinformatics. 30:2206-7 (2014)
(doi:10.1093/bioinformatics/btu191)

Current Protocols in Bioinformatics

Zhou, X. and Wang, T. Using the Wash U Epigenome Browser to examine genome-wide sequencing data. Curr Protoc Bioinformatics. Chapter 10:Unit10.10 (2012)
(doi:10.1002/0471250953.bi1010s40) 

Cancer Informatics

Houseman, E.A., Ince, T.A. Normal cell-type epigenetics and breast cancer classification: a case study of cell mixture-adjusted analysis of DNA methylation data from tumors.  Cancer Inform. (Suppl 4):53-64 (2014)
(doi:10.4137/CIN.S13980)

Expert Review in Anticancer Therapy

Santagata, S., Ince, T.A. Normal cell phenotypes of breast epithelial cells provide the foundation of a breast cancer taxonomy. Expert Rev Anticancer Ther. 12:1385-9 ( 2014) 
(doi:10.1586/14737140.2014.956096)

Neurobiology of aging

Lunnon, K., et al. Blood methylomic signatures of presymptomatic dementia in elderly subjects with type 2 diabetes mellitus. Neurobiol Aging. Dec 24. pii: S0197-4580(14)00840-9 (2014)
(doi:10.1016/j.neurobiolaging.2014.12.023)

Condliffe, D, et al. Cross-region reduction in 5-hydroxymethylcytosine in Alzheimer's disease brain. Neurobiol Aging. 8:1850-4 (2014)
(doi:10.1016/j.neurobiolaging.2014.02.002)

JAMA Neurobiology

Yu, L., et al. Association of Brain DNA Methylation in SORL1, ABCA7, HLA-DRB5, SLC24A4, and BIN1 With Pathological Diagnosis of Alzheimer Disease. JAMA Neurol. 72:15-24 (2015)
(doi:10.1001/jamaneurol.2014.3049)

Translational Research 

Bennett, D.A., et al. Epigenomics of Alzheimer's disease. Transl Res. 165:200-220 (2015)
(doi:10.1016/j.trsl.2014.05.006)

American Journal of Medical Genetics B Neuropsychiatr Genet.

Lunnon, K., Mill, J. Epigenetic studies in Alzheimer's disease: current findings, caveats, and considerations for future studies. Am J Med Genet B Neuropsychiatr Genet. 162B :789-99 (2013)
(doi:10.1002/ajmg.b.32201)

Annals of the Rheumatic Diseases

Nakano, K., et al. DNA methylome signature in rheumatoid arthritis. Annals of the Rheumatic Diseases. 72: 110-117 (2013)
(doi:10.1136/annrheumdis-2012-201526)

Stem Cells

Jeffries, A.R., et al. Stochastic choice of allelic expression in human neural stem cells. Stem Cells 30:1938-47 (2012)
(doi:10.1002/stem.1155)

Methods 

Li. D, et al. Combining MeDIP-seq and MRE-seq to investigate genome-wide CpG methylation. Methods. 72:29-40. (2014)
(doi:10.1016/j.ymeth.2014.10.032)

Whitaker, J.W., et al. Computational schemes for the prediction and annotation of enhancers from epigenomic assays. Methods 72: 86–94 (2015)
(doi:10.1016/j.ymeth.2014.10.008)