Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Archaeal biofilm formation

Abstract

Biofilms are structured and organized communities of microorganisms that represent one of the most successful forms of life on Earth. Bacterial biofilms have been studied in great detail, and many molecular details are known about the processes that govern bacterial biofilm formation, however, archaea are ubiquitous in almost all habitats on Earth and can also form biofilms. In recent years, insights have been gained into the development of archaeal biofilms, how archaea communicate to form biofilms and how the switch from a free-living lifestyle to a sessile lifestyle is regulated. In this Review, we explore the different stages of archaeal biofilm development and highlight similarities and differences between archaea and bacteria on a molecular level. We also consider the role of archaeal biofilms in industry and their use in different industrial processes.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: The different stages of archaeal biofilm formation.
Fig. 2: Archaeal biofilms.

Part a adapted from ref.16, Springer Nature Limited. Image in part b courtesy of C. Moissl-Eichinger, Medical University Graz, Austria, and G. Wanner, University of Munich, Germany. Part c adapted from ref.43, CC-BY-4.0. Part d adapted from ref.15, CC-BY-4.0. Image in part e courtesy of J. Berger, Max Planck Institute for Developmental Biology, Tübingen, Germany. Part f adapted from ref.79, CC-BY-3.0.

Fig. 3: Sulfolobus acidocaldarius biofilm formation.

Part a reproduced from ref.11. Part a adapted from ref.11, CC-BY-4.0. Parts b–d republished with permission of Annual Reviews, from Archaeal Biofilms: The Great Unexplored. Orell, A., Fröls, S. & Albers, S. V., 67 (1), 2013; permission conveyed through Copyright Clearance Center, Inc.

Fig. 4: Regulation of biofilm development in Sulfolobus acidocaldarius and Haloferax volcanii.

Part a adapted from ref.50, Springer Nature Limited.

Similar content being viewed by others

References

  1. Stoodley, P., Sauer, K., Davies, D. G. & Costerton, J. W. Biofilms as complex differentiated communities. Annu. Rev. Microbiol. 56, 187–209 (2002).

    Article  CAS  PubMed  Google Scholar 

  2. Costerton, J. W., Lewandowski, Z., Caldwell, D. E., Korber, D. R. & Lappin-Scott, H. M. Microbial biofilms. Annu. Rev. Microbiol. 49, 711–745 (1995).

    Article  CAS  PubMed  Google Scholar 

  3. Davey, M. E. & O’toole, G. A. Microbial biofilms: from ecology to molecular genetics. Microbiol. Mol. Biol. Rev. 64, 847–867 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Flemming, H.-C. et al. Biofilms: an emergent form of bacterial life. Nat. Rev. Microbiol. 14, 563–575 (2016).

    Article  CAS  PubMed  Google Scholar 

  5. Flemming, H.-C. & Wingender, J. The biofilm matrix. Nat. Rev. Microbiol. 8, 623–633 (2010).

    Article  CAS  PubMed  Google Scholar 

  6. An, D. & Parsek, M. R. The promise and peril of transcriptional profiling in biofilm communities. Curr. Opin. Microbiol. 10, 292–296 (2007).

    Article  CAS  PubMed  Google Scholar 

  7. O’Toole, G., Kaplan, H. B. & Kolter, R. Biofilm formation as microbial development. Annu. Rev. Microbiol. 54, 49–79 (2000).

    Article  PubMed  Google Scholar 

  8. Garrett, R. T., Bhakoo, M. & Zhang, Z. Bacterial adhesion and biofilms on surfaces. Prog. Nat. Sci. 18, 1049–1056 (2008).

    Article  CAS  Google Scholar 

  9. Maier, B. & Wong, G. C. L. How bacteria use type IV pili machinery on surfaces. Trends Microbiol. 23, 775–788 (2015).

    Article  CAS  PubMed  Google Scholar 

  10. Solano, C., Echeverz, M. & Lasa, I. Biofilm dispersion and quorum sensing. Curr. Opin. Microbiol. 18, 96–104 (2014).

    Article  CAS  PubMed  Google Scholar 

  11. Koerdt, A., Gödeke, J., Berger, J., Thormann, K. M. & Albers, S.-V. Crenarchaeal biofilm formation under extreme conditions. PLoS ONE 5, e14104 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  12. Megaw, J. & Gilmore, B. F. Archaeal persisters: persister cell formation as a stress response in Haloferax volcanii. Front. Microbiol. 8, 1589 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  13. Lapaglia, C. & Hartzell, P. L. Stress-induced production of biofilm in the hyperthermophile Archaeoglobus fulgidus. Appl. Environ. Microbiol. 63, 3158–3163 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. DeMaere, M. Z. et al. High level of intergenera gene exchange shapes the evolution of haloarchaea in an isolated Antarctic lake. Proc. Natl Acad. Sci. USA 110, 16939–16944 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Chimileski, S., Franklin, M. J. & Papke, R. T. Biofilms formed by the archaeon Haloferax volcanii exhibit cellular differentiation and social motility, and facilitate horizontal gene transfer. BMC Biol. 12, 65 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  16. Wegener, G., Krukenberg, V., Riedel, D., Tegetmeyer, H. E. & Boetius, A. Intercellular wiring enables electron transfer between methanotrophic archaea and bacteria. Nature 526, 587–590 (2015). This study describes direct interspecies electron transfer between bacteria and archaea for the first time.

    Article  CAS  PubMed  Google Scholar 

  17. Probst, A. & Moissl-Eichinger, C. “Altiarchaeales”: uncultivated archaea from the subsurface. Life 5, 1381–1395 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Moissl-Eichinger, C. et al. Archaea are interactive components of complex microbiomes. Trends Microbiol. 26, 70–85 (2018).

    Article  CAS  PubMed  Google Scholar 

  19. Couradeau, E. et al. Prokaryotic and eukaryotic community structure in field and cultured microbialites from the alkaline Lake Alchichica (Mexico). PLoS ONE 6, e28767 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Battin, T. J., Wille, A., Sattler, B. & Psenner, R. Phylogenetic and functional heterogeneity of sediment biofilms along environmental gradients in a glacial stream. Appl. Environ. Microbiol. 67, 799–807 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Edwards, K. J. et al. An archaeal iron-oxidizing extreme acidophile important in acid mine drainage. Science 287, 1796–1799 (2000).

    Article  CAS  PubMed  Google Scholar 

  22. Webster, N. S. & Negri, A. P. Site-specific variation in Antarctic marine biofilms established on artificial surfaces. Environ. Microbiol. 8, 1177–1190 (2006).

    Article  CAS  PubMed  Google Scholar 

  23. Bang, C. et al. Biofilm formation of mucosa-associated methanoarchaeal strains. Front. Microbiol. 5, 353 (2014). This paper presents the first studied biofilm of a human gut archaeon.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Miller, T. L., Weaver, G. A. & Wolin, M. J. Methanogens and anaerobes in a colon segment isolated from the normal fecal stream. Appl. Environ. Microbiol. 48, 449–450 (1984).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Belay, N., Johnson, R., Rajagopal, B. S., Conway de Macario, E. & Daniels, L. Methanogenic bacteria from human dental plaque. Appl. Environ. Microbiol. 54, 600–603 (1988).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Belay, N., Mukhopadhyay, B., Conway de Macario, E., Galask, R. & Daniels, L. Methanogenic bacteria in human vaginal samples. J. Clin. Microbiol. 28, 1666–1668 (1990).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Turnbaugh, P. J. et al. The human microbiome project. Nature 449, 804–810 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Justice, N. B. et al. Heterotrophic archaea contribute to carbon cycling in low-pH, suboxic biofilm communities. Appl. Environ. Microbiol. 78, 8321–8330 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Offre, P., Spang, A. & Schleper, C. Archaea in biogeochemical cycles. Annu. Rev. Microbiol. 67, 437–457 (2013).

    Article  CAS  PubMed  Google Scholar 

  30. Boetius, A. et al. A marine microbial consortium apparently mediating anaerobic oxidation of methane. Nature 407, 623–626 (2000). This study describes a cross-kingdom biofilm that has an important environmental role in the global methane cycle.

    Article  CAS  PubMed  Google Scholar 

  31. Hallam, S. J. et al. Reverse methanogenesis: testing the hypothesis with environmental genomics. Science 305, 1457–1462 (2004).

    Article  CAS  PubMed  Google Scholar 

  32. Wrede, C., Dreier, A., Kokoschka, S. & Hoppert, M. Archaea in symbioses. Archaea 2012, 596846 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  33. Knittel, K. & Boetius, A. Anaerobic oxidation of methane: progress with an unknown process. Annu. Rev. Microbiol. 63, 311–334 (2009).

    Article  CAS  PubMed  Google Scholar 

  34. Haroon, M. F. et al. Anaerobic oxidation of methane coupled to nitrate reduction in a novel archaeal lineage. Nature 500, 567–570 (2013).

    Article  CAS  PubMed  Google Scholar 

  35. Dekas, A. E., Poretsky, R. S. & Orphan, V. J. Deep-sea archaea fix and share nitrogen in methane-consuming microbial consortia. Science 326, 422–426 (2009).

    Article  CAS  PubMed  Google Scholar 

  36. Baker, B. J. et al. Microbial communities in acid mine drainage. FEMS Microbiol. Ecol. 44, 139–152 (2003).

    Article  CAS  PubMed  Google Scholar 

  37. Wilmes, P. et al. Natural acidophilic biofilm communities reflect distinct organismal and functional organization. ISME J. 3, 266–270 (2009).

    Article  CAS  PubMed  Google Scholar 

  38. Fröls, S., Dyall-Smith, M. & Pfeifer, F. Biofilm formation by haloarchaea. Environ. Microbiol. 14, 3159–3174 (2012). This paper provides an extensive description of the morphology and structure of a large number of haloarchaeal biofilms.

    Article  PubMed  CAS  Google Scholar 

  39. Losensky, G., Vidakovic, L., Klingl, A., Pfeifer, F. & Fröls, S. Novel pili-like surface structures of Halobacterium salinarum strain R1 are crucial for surface adhesion. Front. Microbiol. 5, 755 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  40. Esquivel, R., Xu, R. & Pohlschroder, M. Novel, archaeal adhesion pilins with a conserved N-terminus. J. Bacteriol. 195, 3808–3818 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Esquivel, R. N., Schulze, S., Xu, R., Hippler, M. & Pohlschroder, M. Identification of Haloferax volcanii pilin N -glycans with diverse roles in pilus biosynthesis, adhesion, and microcolony formation. J. Biol. Chem. 291, 10602–10614 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Esquivel, R. N. & Pohlschroder, M. A conserved type IV pilin signal peptide H-domain is critical for the post-translational regulation of flagella-dependent motility. Mol. Microbiol. 93, 494–504 (2014).

    Article  CAS  PubMed  Google Scholar 

  43. Liao, Y. et al. Morphological and proteomic analysis of biofilms from the Antarctic archaeon, Halorubrum lacusprofundi. Sci. Rep. 6, 37454 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Henche, A.-L. et al. Structure and function of the adhesive type IV pilus of Sulfolobus acidocaldarius. Environ. Microbiol. 14, 3188–3202 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Zolghadr, B. et al. Appendage-mediated surface adherence of Sulfolobus solfataricus. J. Bacteriol. 192, 104–110 (2010).

    Article  CAS  PubMed  Google Scholar 

  46. Zhang, R. et al. Visualization and analysis of EPS glycoconjugates of the thermoacidophilic archaeon Sulfolobus metallicus. Appl. Microbiol. Biotechnol. 99, 7343–7356 (2015).

    Article  CAS  PubMed  Google Scholar 

  47. Castro, C. et al. Biofilm formation and interspecies interactions in mixed cultures of thermo-acidophilic archaea Acidianus spp. and Sulfolobus metallicus. Res. Microbiol. 167, 604–612 (2016).

    Article  PubMed  Google Scholar 

  48. Thoma, C. et al. The Mth60 fimbriae of Methanothermobacter thermoautotrophicus are functional adhesins. Environ. Microbiol. 10, 2785–2795 (2008).

    Article  CAS  PubMed  Google Scholar 

  49. Moissl, C., Rachel, R., Briegel, A., Engelhardt, H. & Huber, R. The unique structure of archaeal ‘hami’, highly complex cell appendages with nano-grappling hooks. Mol. Microbiol. 56, 361–370 (2005). This report is the first description of hami, which are archaeal surface structures that enable the formation of a highly structured biofilm.

    Article  CAS  PubMed  Google Scholar 

  50. Orell, A. et al. Lrs14 transcriptional regulators influence biofilm formation and cell motility of Crenarchaea. ISME J. 7, 1886–1898 (2013). This study describes the identification of an archaeal biofilm regulator.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Koerdt, A. et al. Macromolecular fingerprinting of sulfolobus species in biofilm: a transcriptomic and proteomic approach combined with spectroscopic analysis. J. Proteome Res. 10, 4105–4119 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Petrova, O. E. & Sauer, K. Sticky situations: key components that control bacterial surface attachment. J. Bacteriol. 194, 2413–2425 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Antón, J., Meseguer, I. & Rodríguez-Valera, F. Production of an extracellular polysaccharide by Haloferax mediterranei. Appl. Environ. Microbiol. 54, 2381–2386 (1988).

    Article  PubMed  PubMed Central  Google Scholar 

  54. Busch, A. & Waksman, G. Chaperone-usher pathways: diversity and pilus assembly mechanism. Phil. Trans. R. Soc. 367, 1112–1122 (2012).

    Article  CAS  Google Scholar 

  55. Schneewind, O. & Missiakas, D. Sec-secretion and sortase-mediated anchoring of proteins in Gram-positive bacteria. Biochim. Biophys. Acta 1843, 1687–1697 (2014).

    Article  CAS  PubMed  Google Scholar 

  56. Blanco, L. P., Evans, M. L., Smith, D. R., Badtke, M. P. & Chapman, M. R. Diversity, biogenesis and function of microbial amyloids. Trends Microbiol. 20, 66–73 (2012).

    Article  CAS  PubMed  Google Scholar 

  57. Giltner, C. L., Nguyen, Y. & Burrows, L. L. Type IV pilin proteins: versatile molecular modules. Microbiol. Mol. Biol. Rev. 76, 740–772 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Pohlschroder, M., Ghosh, A., Tripepi, M. & Albers, S.-V. Archaeal type IV pilus-like structures—evolutionarily conserved prokaryotic surface organelles. Curr. Opin. Microbiol. 14, 357–363 (2011).

    Article  CAS  PubMed  Google Scholar 

  59. Szabo, Z. & Pohlschroder, M. Diversity and subcellular distribution of archaeal secreted proteins. Front. Microbiol. 3, 207 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  60. Shahapure, R., Driessen, R. P. C., Haurat, M. F., Albers, S.-V. & Dame, R. T. The archaellum: a rotating type IV pilus. Mol. Microbiol. 91, 716–723 (2014).

    Article  CAS  PubMed  Google Scholar 

  61. Albers, S.-V. & Jarrell, K. F. The archaellum: how archaea swim. Front. Microbiol. 6, 23 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  62. Makarova, K. S., Koonin, E. V. & Albers, S.-V. Diversity and evolution of type IV pili systems in archaea. Front. Microbiol. 7, 667 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  63. Pohlschroder, M. & Esquivel, R. N. Archaeal type IV pili and their involvement in biofilm formation. Front. Microbiol. 6, 190 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  64. Jarrell, K. F., Stark, M., Nair, D. B. & Chong, J. P. J. J. Flagella and pili are both necessary for efficient attachment of Methanococcus maripaludis to surfaces. FEMS Microbiol. Lett. 319, 44–50 (2011).

    Article  CAS  PubMed  Google Scholar 

  65. Henche, A. L., Koerdt, A., Ghosh, A. & Albers, S. V. Influence of cell surface structures on crenarchaeal biofilm formation using a thermostable green fluorescent protein. Environ. Microbiol. 14, 779–793 (2012).

    Article  CAS  PubMed  Google Scholar 

  66. Tripepi, M., Imam, S. & Pohlschröder, M. Haloferax volcanii flagella are required for motility but are not involved in PibD-dependent surface adhesion. J. Bacteriol. 192, 3093–3102 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Bellack, A., Huber, H., Rachel, R., Wanner, G. & Wirth, R. Methanocaldococcus villosus sp. nov., a heavily flagellated archaeon that adheres to surfaces and forms cell-cell contacts. Int. J. Syst. Evol. Microbiol. 61, 1239–1245 (2011).

    Article  PubMed  Google Scholar 

  68. Nather, D. J., Rachel, R., Wanner, G. & Wirth, R. Flagella of Pyrococcus furiosus: multifunctional organelles, made for swimming, adhesion to various surfaces, and cell-cell contacts. J. Bacteriol. 188, 6915–6923 (2006).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  69. Herzog, B. & Wirth, R. Swimming behavior of selected species of archaea. Appl. Environ. Microbiol. 78, 1670–1674 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Schopf, S., Wanner, G., Rachel, R. & Wirth, R. An archaeal bi-species biofilm formed by Pyrococcus furiosus and Methanopyrus kandleri. Arch. Microbiol. 190, 371–377 (2008).

    Article  CAS  PubMed  Google Scholar 

  71. Esquivel, R. N., Xu, R. & Pohlschroder, M. Novel archaeal adhesion pilins with a conserved N terminus. J. Bacteriol. 195, 3808–3818 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Perras, A. K. et al. Grappling archaea: ultrastructural analyses of an uncultivated, cold-loving archaeon, and its biofilm. Front. Microbiol. 5, 397 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  73. Nickell, S., Hegerl, R., Baumeister, W. & Rachel, R. Pyrodictium cannulae enter the periplasmic space but do not enter the cytoplasm, as revealed by cryo-electron tomography. J. Struct. Biol. 141, 34–42 (2003).

    Article  PubMed  Google Scholar 

  74. Rudolph, C., Wanner, G. & Huber, R. Natural communities of novel archaea and bacteria growing in cold sulfurous springs with a string-of-pearls-like morphology. Appl. Environ. Microbiol. 67, 2336–2344 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Probst, A. J. et al. Biology of a widespread uncultivated archaeon that contributes to carbon fixation in the subsurface. Nat. Commun. 5, 5497 (2014).

    Article  CAS  PubMed  Google Scholar 

  76. Moissl, C., Rudolph, C. & Huber, R. Natural communities of novel archaea and bacteria with a string-of-pearls-like morphology: molecular analysis of the bacterial partners. Appl. Environ. Microbiol. 68, 933–937 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Doddema, H. J., Derksen, J. W. M. & Vogels, G. D. Fimbriae and flagella of methanogenic bacteria. FEMS Microbiol. Lett. 5, 135–138 (1979).

    Article  Google Scholar 

  78. Rieger, G., Rachel, R., Hermann, R. & Stetter, K. O. Ultrastructure of the hyperthermophilic archaeon Pyrodictium abyssi. J. Struct. Biol. 115, 78–87 (1995).

    Article  Google Scholar 

  79. Comolli, L. R. & Banfield, J. F. Inter-species interconnections in acid mine drainage microbial communities. Front. Microbiol. 5, 367 (2014).

    PubMed  PubMed Central  Google Scholar 

  80. Koerdt, A. et al. Complementation of Sulfolobus solfataricus PBL2025 with an α-mannosidase: effects on surface attachment and biofilm formation. Extremophiles 16, 115–125 (2012).

    Article  CAS  PubMed  Google Scholar 

  81. Jachlewski, S. et al. Isolation of extracellular polymeric substances from biofilms of the thermoacidophilic archaeon Sulfolobus acidocaldarius. Front. Bioeng. Biotechnol. 3, 123 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  82. Ellen, A. F., Albers, S.-V. & Driessen, A. J. M. Comparative study of the extracellular proteome of Sulfolobus species reveals limited secretion. Extremophiles 14, 87–98 (2010).

    Article  CAS  PubMed  Google Scholar 

  83. Zhao, D. et al. Improving polyhydroxyalkanoate production by knocking out the genes involved in exopolysaccharide biosynthesis in Haloferax mediterranei. Appl. Microbiol. Biotechnol. 97, 3027–3036 (2013).

    Article  CAS  PubMed  Google Scholar 

  84. Gloag, E. S. et al. Self-organization of bacterial biofilms is facilitated by extracellular DNA. Proc. Natl Acad. Sci. USA 110, 11541–11546 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Dominiak, D. M., Nielsen, J. L. & Nielsen, P. H. Extracellular DNA is abundant and important for microcolony strength in mixed microbial biofilms. Environ. Microbiol. 13, 710–721 (2011).

    Article  CAS  PubMed  Google Scholar 

  86. Whitchurch, C. B., Tolker-Nielsen, T., Ragas, P. C. & Mattick, J. S. Extracellular DNA required for bacterial biofilm formation. Science 295, 1487 (2002).

    Article  CAS  PubMed  Google Scholar 

  87. Izano, E. A., Amarante, M. A., Kher, W. B. & Kaplan, J. B. Differential roles of poly-N-acetylglucosamine surface polysaccharide and extracellular DNA in Staphylococcus aureus and Staphylococcus epidermidis biofilms. Appl. Environ. Microbiol. 74, 470–476 (2008).

    Article  CAS  PubMed  Google Scholar 

  88. Ibáñez de Aldecoa, A. L., Zafra, O. & González-Pastor, J. E. Mechanisms and regulation of extracellular DNA release and its biological roles in microbial communities. Front. Microbiol. 8, 1390 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  89. Chimileski, S., Dolas, K., Naor, A., Gophna, U. & Papke, R. T. Extracellular DNA metabolism in Haloferax volcanii. Front. Microbiol. 5, 57 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  90. Ajon, M. et al. UV-inducible DNA exchange in hyperthermophilic archaea mediated by type IV pili. Mol. Microbiol. 82, 807–817 (2011).

    Article  CAS  PubMed  Google Scholar 

  91. van Wolferen, M., Wagner, A., van der Does, C. & Albers, S.-V. The archaeal Ced system imports DNA. Proc. Natl Acad. Sci. USA 113, 2496–2501 (2016).

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  92. Fröls, S. et al. UV-inducible cellular aggregation of the hyperthermophilic archaeon Sulfolobus solfataricus is mediated by pili formation. Mol. Microbiol. 70, 938–952 (2008).

    Article  PubMed  CAS  Google Scholar 

  93. Yoon, M. Y., Lee, K.-M., Park, Y., Yoon, S. S. & McFeters, G. Contribution of cell elongation to the biofilm formation of Pseudomonas aeruginosa during anaerobic respiration. PLoS ONE 6, e16105 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. López-Ribot, L. J. Candida albicans biofilms: more than filamentation. Curr. Biol. 15, R453–R455 (2005).

    Article  PubMed  CAS  Google Scholar 

  95. Fourie, R. et al. Candida albicans and Pseudomonas aeruginosa interaction, with focus on the role of eicosanoids. Front. Physiol. 7, 64 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  96. Konstantinidou, N. & Morrissey, J. P. Co-occurence of filamentation defects and impaired biofilms in Candida albicans protein kinase mutants. FEMS Yeast Res. 15, fov092 (2015).

    Article  PubMed  CAS  Google Scholar 

  97. Duggin, I. G. et al. CetZ tubulin-like proteins control archaeal cell shape. Nature 519, 362–365 (2015).

    Article  CAS  PubMed  Google Scholar 

  98. Kjelleberg, S., Barraud, N. & Rice, S. A. in Microbial Biofilms 2nd edn (eds Ghannoum, M., Parsek, M., Whiteley, M. & Mukherjee, P.) 343–362 (American Society of Microbiology, 2015).

  99. McDougald, D., Rice, S. A., Barraud, N., Steinberg, P. D. & Kjelleberg, S. Should we stay or should we go: mechanisms and ecological consequences for biofilm dispersal. Nat. Rev. Microbiol. 10, 39–50 (2012).

    Article  CAS  Google Scholar 

  100. Baker-Austin, C., Potrykus, J., Wexler, M., Bond, P. L. & Dopson, M. Biofilm development in the extremely acidophilic archaeon ‘Ferroplasma acidarmanus’ Fer1. Extremophiles 14, 485–491 (2010).This study is the first to use omics technologies to investigate archaeal biofilms.

    Article  PubMed  Google Scholar 

  101. Losensky, G. et al. Shedding light on biofilm formation of Halobacterium salinarum R1 by SWATH-LC/MS/MS analysis of planktonic and sessile cells. Proteomics 17, 1–13 (2017).

    Article  CAS  Google Scholar 

  102. Reimann, J. et al. Archaeal signal transduction: impact of protein phosphatase deletions on cell size, motility, and energy metabolism in Sulfolobus acidocaldarius. Mol. Cell. Proteomics 12, 3908–3923 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Li, L. et al. Wing phosphorylation is a major functional determinant of the Lrs14-type biofilm and motility regulator AbfR1 in Sulfolobus acidocaldarius. Mol. Microbiol. 105, 777–793 (2017).

    Article  CAS  PubMed  Google Scholar 

  104. Pesavento, C. et al. Inverse regulatory coordination of motility and curli-mediated adhesion in Escherichia coli. Genes Dev. 22, 2434–2446 (2008).

    CAS  PubMed  Google Scholar 

  105. Orell, A. et al. A regulatory RNA is involved in RNA duplex formation and biofilm regulation in Sulfolobus acidocaldarius. Nucleic Acids Res. 46, 4794–4806 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  106. Ghaz-Jahanian, M. A., Khodaparastan, F., Berenjian, A. & Jafarizadeh-Malmiri, H. Influence of small RNAs on biofilm formation process in bacteria. Mol. Biotechnol. 55, 288–297 (2013).

    Article  CAS  PubMed  Google Scholar 

  107. Mika, F. & Hengge, R. Small regulatory RNAs in the control of motility and biofilm formation in E. Coli and Salmonella. Int. J. Mol. Sci. 14, 4560–4579 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Prasse, D., Ehlers, C., Backofen, R. & Schmitz, R. A. Regulatory RNAs in archaea: first target identification in Methanoarchaea. Biochem. Soc. Trans. 41, 344–349 (2013).

    Article  CAS  PubMed  Google Scholar 

  109. Hawver, L. A., Jung, S. A. & Ng, W.-L. Specificity and complexity in bacterial quorum-sensing systems. FEMS Microbiol. Rev. 40, 738–752 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Waters, C. M. & Bassler, B. L. Quorum sensing: cell-to-cell communication in bacteria. Annu. Rev. Cell Dev. Biol. 21, 319–346 (2005).

    Article  CAS  PubMed  Google Scholar 

  111. Parsek, M. R. & Greenberg, E. P. Sociomicrobiology: the connections between quorum sensing and biofilms. Trends Microbiol. 13, 27–33 (2005).

    Article  CAS  PubMed  Google Scholar 

  112. Davies, D. G. et al. The involvement of cell-to-cell signals in the development of a bacterial biofilm. Science 280, 295–298 (1998).

    Article  CAS  PubMed  Google Scholar 

  113. Zhang, G. G. et al. Acyl homoserine lactone-based quorum sensing in a methanogenic archaeon. ISME J. 6, 1336–1344 (2012). This study describes archaeal AHL-based quorum sensing.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Tommonaro, G., Abbamondi, G. R., Iodice, C., Tait, K. & De Rosa, S. Diketopiperazines produced by the halophilic archaeon, Haloterrigena hispanica, activate AHL bioreporters. Microb. Ecol. 63, 490–495 (2012).

    Article  CAS  PubMed  Google Scholar 

  115. Paggi, R. A., Martone, C. B., Fuqua, C. & De Castro, R. E. Detection of quorum sensing signals in the haloalkaliphilic archaeon Natronococcus occultus. FEMS Microbiol. Lett. 221, 49–52 (2003).

    Article  CAS  PubMed  Google Scholar 

  116. Nichols, J. D., Johnson, M. R., Chou, C.-J. & Kelly, R. M. Temperature, not LuxS, mediates AI-2 formation in hydrothermal habitats. FEMS Micriobiol. Ecol. 68, 173–181 (2009).

    Article  CAS  Google Scholar 

  117. Ng, F. S. W., Wright, D. M. & Seah, S. Y. K. Characterization of a phosphotriesterase-like lactonase from Sulfolobus solfataricus and its immobilization for disruption of quorum sensing. Appl. Environ. Microbiol. 77, 1181–1186 (2011).

    Article  CAS  PubMed  Google Scholar 

  118. Hiblot, J., Gotthard, G., Chabriere, E. & Elias, M. Characterisation of the organophosphate hydrolase catalytic activity of SsoPox. Sci. Rep. 2, 779 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  119. Fuqua, C. The QscR quorum-sensing regulon of Pseudomonas aeruginosa: an orphan claims its identity. J. Bacteriol. 188, 3169–3171 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Rajput, A. & Kumar, M. Computational exploration of putative LuxR solos in archaea and their functional implications in quorum sensing. Front. Microbiol. 8, 798 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  121. Romling, U. Great times for small molecules: c-di-AMP, a second messenger candidate in bacteria and archaea. Sci. Signal. 1, 39 (2008).

    Article  Google Scholar 

  122. Cowan, D. A. & Fernandez-Lafuente, R. Enhancing the functional properties of thermophilic enzymes by chemical modification and immobilization. Enzyme Microb. Technol. 49, 326–346 (2011).

    Article  CAS  PubMed  Google Scholar 

  123. Orell, A., Navarro, C. A., Arancibia, R., Mobarec, J. C. & Jerez, C. A. Life in blue: copper resistance mechanisms of bacteria and archaea used in industrial biomining of minerals. Biotechnol. Adv. 28, 839–848 (2010).

    Article  CAS  PubMed  Google Scholar 

  124. Klose, H., Röder, J., Girfoglio, M., Fischer, R. & Commandeur, U. Hyperthermophilic endoglucanase for in planta lignocellulose conversion. Biotechnol. Biofuels 5, 63 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Anderson, I. et al. Novel insights into the diversity of catabolic metabolism from ten haloarchaeal genomes. PLoS ONE 6, e20237 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Quehenberger, J., Shen, L., Albers, S.-V., Siebers, B. & Spadiut, O. Sulfolobus — a potential key organism in future biotechnology. Front. Microbiol. 8, 2474 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  127. Brown, M. N., Briones, A., Diana, J. & Raskin, L. Ammonia-oxidizing archaea and nitrite-oxidizing nitrospiras in the biofilter of a shrimp recirculating aquaculture system. FEMS Microbiol. Ecol. 83, 17–25 (2013).

    Article  CAS  PubMed  Google Scholar 

  128. Barcón, T., Alonso-Gutiérrez, J. & Omil, F. Molecular and physiological approaches to understand the ecology of methanol degradation during the biofiltration of air streams. Chemosphere 87, 1179–1185 (2012).

    Article  PubMed  CAS  Google Scholar 

  129. Gómez-Silván, C. et al. Structure of archaeal communities in membrane-bioreactor and submerged-biofilter wastewater treatment plants. Bioresour. Technol. 101, 2096–2105 (2010).

    Article  PubMed  CAS  Google Scholar 

  130. Morales, M. et al. Bio-oxidation of H2S by Sulfolobus metallicus. Biotechnol. Lett. 33, 2141–2145 (2011).

    Article  CAS  PubMed  Google Scholar 

  131. Valenzuela, L. et al. Genomics, metagenomics and proteomics in biomining microorganisms. Biotechnol. Adv. 24, 197–211 (2006).

    Article  CAS  PubMed  Google Scholar 

  132. Vera, M., Schippers, A. & Sand, W. Progress in bioleaching: fundamentals and mechanisms of bacterial metal sulfide oxidation-part A. Appl. Microbiol. Biotechnol. 97, 7529–7541 (2013).

    Article  CAS  PubMed  Google Scholar 

  133. Olson, G. J., Brierley, J. A. & Brierley, C. L. Bioleaching review part B. Appl. Microbiol. Biotechnol. 63, 249–257 (2003).

    Article  CAS  PubMed  Google Scholar 

  134. Rawlings, D. E. Characteristics and adaptability of iron- and sulfur-oxidizing microorganisms used for the recovery of metals from minerals and their concentrates. Microb. Cell Fact. 4, 13 (2005).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  135. Watling, H. R. The bioleaching of sulphide minerals with emphasis on copper sulphides — a review. Hydrometallurgy 84, 81–108 (2006).

    Article  CAS  Google Scholar 

  136. Lindström, E. B., Gunneriusson, E. & Tuovinen, O. H. Bacterial oxidation of refractory sulfide ores for gold recovery. Crit. Rev. Biotechnol. 12, 133–155 (1992).

    Article  Google Scholar 

  137. Kurosawa, N. et al. Sulfurisphaera ohwakuensis gen. nov., sp. nov., a novel extremely thermophilic acidophile of the order Sulfolobales. Int. J. Syst. Bacteriol. 48, 451–456 (1998).

    Article  PubMed  Google Scholar 

  138. Norris, P. R., Clark, D. A., Owen, J. P. & Waterhouse, S. Characteristics of Sulfobacillus acidophilus sp. nov. and other moderately thermophilic mineral-sulphide-oxidizing bacteria. Microbiology 142, 775–783 (1996).

    Article  CAS  PubMed  Google Scholar 

  139. Calderón, K. et al. Archaeal diversity in biofilm technologies applied to treat urban and industrial wastewater: recent advances and future prospects. Int. J. Mol. Sci. 14, 18572–18598 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  140. Sekiguchi, Y., Kamagata, Y., Nakamura, K., Ohashi, A. & Harada, H. Fluorescence in situ hybridization using 16S rRNA-targeted oligonucleotides reveals localization of methanogens and selected uncultured bacteria in mesophilic and thermophilic sludge granules. Appl. Environ. Microbiol. 65, 1280–1288 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Rademacher, A. et al. Characterization of microbial biofilms in a thermophilic biogas system by high-throughput metagenome sequencing. FEMS Microbiol. Ecol. 79, 785–799 (2012).

    Article  CAS  PubMed  Google Scholar 

  142. Wang, H. et al. Development of microbial populations in the anaerobic hydrolysis of grass silage for methane production. FEMS Microbiol. Ecol. 72, 496–506 (2010).

    Article  CAS  PubMed  Google Scholar 

  143. Le-Clech, P. Membrane bioreactors and their uses in wastewater treatments. Appl. Microbiol. Biotechnol. 88, 1253–1260 (2010).

    Article  CAS  PubMed  Google Scholar 

  144. Calderón, K., Rodelas, B., Cabirol, N., González-López, J. & Noyola, A. Analysis of microbial communities developed on the fouling layers of a membrane-coupled anaerobic bioreactor applied to wastewater treatment. Bioresour. Technol. 102, 4618–4627 (2011).

    Article  PubMed  CAS  Google Scholar 

  145. Yeon, K.-M. et al. Quorum sensing: a new biofouling control paradigm in a membrane bioreactor for advanced wastewater treatment. Environ. Sci. Technol. 43, 380–385 (2009).

    Article  CAS  PubMed  Google Scholar 

  146. Bang, C. & Schmitz, R. A. Archaea associated with human surfaces: not to be underestimated. FEMS Microbiol. Rev. 39, 631–648 (2015).

    Article  CAS  PubMed  Google Scholar 

  147. Dridi, B., Raoult, D. & Drancourt, M. Archaea as emerging organisms in complex human microbiomes. Anaerobe 17, 56–63 (2011).

    Article  PubMed  Google Scholar 

  148. Probst, A. J., Auerbach, A. K. & Moissl-Eichinger, C. Archaea on human skin. PLoS ONE 8, e65388 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Dridi, B., Henry, M., El Khéchine, A., Raoult, D. & Drancourt, M. High prevalence of Methanobrevibacter smithii and Methanosphaera stadtmanae detected in the human gut using an improved DNA detection protocol. PLoS ONE 4, e7063 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  150. Lagier, J.-C., Million, M., Hugon, P., Armougom, F. & Raoult, D. Human gut microbiota: repertoire and variations. Front. Cell. Infect. Microbiol. 2, 136 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  151. McNeil, N. I. The contribution of the large intestine to energy supplies in man. Am. J. Clin. Nutr. 39, 338–342 (1984).

    Article  CAS  PubMed  Google Scholar 

  152. Samuel, B. S. et al. Genomic and metabolic adaptations of Methanobrevibacter smithii to the human gut. Proc. Natl Acad. Sci. USA 104, 10643–10648 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. Pimentel, M., Gunsalus, R. P., Rao, S. S. & Zhang, H. Methanogens in human health and disease. Am. J. Gastroenterol. Suppl. 6, 28–33 (2012).

    Article  CAS  Google Scholar 

  154. White, J. F. Syntrophic imbalance and the etiology of bacterial endoparasitism diseases. Med. Hypotheses 107, 14–15 (2017).

    Article  PubMed  Google Scholar 

  155. Bang, C., Weidenbach, K., Gutsmann, T., Heine, H. & Schmitz, R. A. The intestinal archaea Methanosphaera stadtmanae and Methanobrevibacter smithii activate human dendritic cells. PLoS ONE 9, e99411 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  156. Faveri, M. et al. Prevalence and microbiological diversity of Archaea in peri-implantitis subjects by 16S ribosomal RNA clonal analysis. J. Periodontal Res. 46, 338–344 (2011).

    Article  CAS  PubMed  Google Scholar 

  157. Matarazzo, F., Ribeiro, A. C., Feres, M., Faveri, M. & Mayer, M. P. A. Diversity and quantitative analysis of Archaea in aggressive periodontitis and periodontally healthy subjects. J. Clin. Periodontol. 38, 621–627 (2011).

    Article  PubMed  Google Scholar 

  158. Vianna, M. E., Conrads, G., Gomes, B. P. F. A. & Horz, H. P. T-RFLP-based mcrA gene analysis of methanogenic archaea in association with oral infections and evidence of a novel Methanobrevibacter phylotype. Oral Microbiol. Immunol. 24, 417–422 (2009).

    Article  CAS  PubMed  Google Scholar 

  159. Lepp, P. W. et al. Methanogenic Archaea and human periodontal disease. Proc. Natl Acad. Sci. USA 101, 6176–6181 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  160. Orell, A., Fröls, S. & Albers, S.-V. Archaeal biofilms: the great unexplored. Annu. Rev. Microbiol. 67, 337–354 (2013).

    Article  CAS  PubMed  Google Scholar 

  161. Comolli, L. R., Baker, B. J., Downing, K. H., Siegerist, C. E. & Banfield, J. F. Three-dimensional analysis of the structure and ecology of a novel, ultra-small archaeon. ISME J. 3, 159–167 (2009).

    Article  CAS  PubMed  Google Scholar 

  162. Baker, B. J. et al. Enigmatic, ultrasmall, uncultivated Archaea. Proc. Natl Acad. Sci. USA 107, 8806–8811 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  163. Macalady, J. L., Jones, D. S. & Lyon, E. H. Extremely acidic, pendulous cave wall biofilms from the Frasassi cave system, Italy. Environ. Microbiol. 9, 1402–1414 (2007).

    Article  CAS  PubMed  Google Scholar 

  164. Rascovan, N., Maldonado, J., Martín, P. V. & María, E. F. Metagenomic study of red biofilms from Diamante Lake reveals ancient arsenic bioenergetics in haloarchaea. Int. Soc. Microb. Ecol. 109, 1–11 (2015).

    Google Scholar 

  165. Brileya, K. A., Camilleri, L. B., Zane, G. M., Wall, J. D. & Fields, M. W. Biofilm growth mode promotes maximum carrying capacity and community stability during product inhibition syntrophy. Front. Microbiol. 5, 693 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  166. Schrenk, M. O., Kelley, D. S., Delaney, J. R. & Baross, J. A. Incidence and diversity of microorganisms within the walls of an active deep-sea sulfide chimney. Appl. Environ. Microbiol. 69, 3580–3592 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  167. Auernik, K. S., Maezato, Y., Blum, P. H. & Kelly, R. M. The genome sequence of the metal-mobilizing, extremely thermoacidophilic archaeon Metallosphaera sedula provides insights into bioleaching-associated metabolism. Appl. Environ. Microbiol. 74, 682–692 (2008).

    Article  CAS  PubMed  Google Scholar 

  168. Kozubal, M. A. et al. Microbial iron cycling in acidic geothermal springs of yellowstone national park: integrating molecular surveys, geochemical processes, and isolation of novel fe-active microorganisms. Front. Microbiol. 3, 109 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  169. Rinker, K. D. & Kelly, R. M. Growth physiology of the hyperthermophilic archaeon thermococcus litoralis: development of a sulfur-free defined medium, characterization of an exopolysaccharide, and evidence of biofilm formation. Appl. Environ. Microbiol. 62, 4478–4485 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

A.O. received intramural funding from the Max Planck Society, and M.v.W. and S.V.A. were supported by a European Research Council starting grant (52311; ARCHAELLUM).

Author information

Authors and Affiliations

Authors

Contributions

M.v.W., A.O. and S.V.A. researched data for the article, substantially contributed to discussion of content, wrote the article and reviewed and edited the manuscript before submission.

Corresponding author

Correspondence to Sonja-Verena Albers.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Glossary

Sessile communities

Immobilized communities of cells attached to a surface.

Extracellular polymeric substances

(EPSs). Extracellular biopolymers (including polysaccharides, nucleic acids, proteins and lipids) that provide structural support to the biofilm and nutrition to the surrounding cells.

Microcolonies

Colonies of cells that can be observed only through a microscope.

Syntrophy

The symbiotic relationship between two different species in which one or both benefit from the other through metabolic interactions.

Acid mine drainages

Discharges of acidic water, often containing toxic compounds, from coal or metal mines.

Reverse methanogenesis

The anaerobic oxidation of methane.

Biodegradation

The breakdown of materials by microorganisms or through other biological means.

Bioleaching

The extraction of metals from their ores by means of microorganisms, which convert insoluble metals into a soluble form.

Archaella

Archaeal motility structures analagous to flagella but homologous in their subunit composition to T4P.

Cytoplasmic bridges

Structures between two cells that connect their cytoplasms.

Nanowires

Electrically conductive appendages of a few nanometres in diameter formed by certain microorganisms.

Pyrite

An iron sulfide with the chemical formula FeS2.

Ced system

A transporter essential for the exchange of chromosomal DNA between connecting Sulfolobus cells. Homologues can be found in several Crenarchaeota.

Quorum-sensing inducers

Signalling molecules produced by microorganisms that allow the communication between cells in response to changes in population density.

Carboxylated acyl homoserine lactones

(AHLs). A class of quorum-sensing signalling molecules.

Persister cells

Dormant cells that are phenotypic variants of the wild-type population. They are highly tolerant to different stresses.

Autoinducer

(AI-2). A class of quorum-sensing signalling molecules.

Second messenger

An intracellular signalling molecule that acts in response to extracellular molecules and triggers signal transduction cascades.

Grass silage

Fermented grass.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

van Wolferen, M., Orell, A. & Albers, SV. Archaeal biofilm formation. Nat Rev Microbiol 16, 699–713 (2018). https://doi.org/10.1038/s41579-018-0058-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41579-018-0058-4

This article is cited by

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research