Reviews & Analysis

Filter By:

Article Type
Year
  • Oxide-based thermoelectric materials that exhibit a high figure of merit are promising because of their good chemical and thermal stabilities and their relative harmlessness compared with chalcogenide-based state-of-the-art thermoelectric materials. The layered barium-cobalt oxide (Ba1/3CoO2) exhibits a record-high ZT of 0.55 at 600 °C in air. The increase in ZT is directly originated by the decreased thermal conductivity of Ba1/3CoO2. As we hypothesized, the greater the atomic mass, the lower the thermal conductivity, resulting in higher ZT. The ZT is reliable and the highest among thermoelectric oxides. Moreover, this value is comparable to those of p-type PbTe and p-type SiGe.

    • Yuqiao Zhang
    • Hiromichi Ohta
    Review ArticleOpen Access
  • Malaria continues to be among the most lethal infectious diseases. In the last two decades, we have witnessed unprecedented success in reducing the mortality rate. With the UN resolution of eradicating malaria by 2030 approaching fast, the scientific community has devoted substantial attention to interdisciplinary research using the latest opto-/magnetic-based technologies to detect a novel biomarker coming from the malarial pigment (hemozoin), which also carries vital information for discovering targeted drugs. This perspective article looks into the growing interest in this field and discusses the practical applicability of these sensing technologies.

    • Ashutosh Rathi
    • Z. Chowdhry
    • Weng Kung Peng
    Review ArticleOpen Access
  • This perspective highlights recent applications of ionogels that take advantage of their ionic conductivity, nonvolatility, and high thermal and electrochemical stability. Examples include sensors, batteries, electronics, 3D printing, and adhesives. Improving the mechanical properties of ionogels broadens the application space; thus, simple strategies to achieve tough ionogels are introduced. Finally, the potential applications and future opportunities of ionogels are discussed.

    • Meixiang Wang
    • Jian Hu
    • Michael D. Dickey
    PerspectiveOpen Access
  • This review highlights single-aggregate spectroscopy studies of conjugated polymer aggregates based on a combination of solvent vapor annealing and single-molecule fluorescence techniques and draws mesoscopic connections between morphology, electronic coupling, and photophysics in conjugated polymers.

    • Chanwoo Kim
    • Hyeyoung Joung
    • Jaesung Yang
    Review ArticleOpen Access
  • Inverted perovskite solar cells (PSCs) with a p-i-n architecture are being actively researched due to their concurrent good stability and decent efficiency. In particular, the power conversion efficiency (PCE) of inverted PSCs has seen clear improvement in recent years and is now almost approaching that of n-i-p PSCs. Here, we systematically review recent progress in the development of high-efficiency inverted PSCs, and highlight the development of charge transport materials and the effects of defect passivation strategies on the performance of inverted PSCs, with the aim of providing constructive suggestions for the future development of inverted PSCs.

    • Sanwan Liu
    • Vasudevan P. Biju
    • Zonghao Liu
    Review ArticleOpen Access
  • This review highlights the recent advances in the bioapplications of higher-order DNA origami structures at multiple scales. After a brief introduction to the development of DNA origami, we describe the use of DNA origami structures to assist in single-molecule studies, manipulate lipid membranes, direct cell behaviors, and deliver drugs as smart nanocarriers. Our opinions on the current challenges and future directions are also shared.

    • Yihao Zhou
    • Jinyi Dong
    • Qiangbin Wang
    Review ArticleOpen Access
  • Due to their unique physical characteristics, surfactants containing fluorocarbon chains form hierarchical patterns of two-dimensional mesoscopic/microscopic self-assemblies on the surface of water. This review describes the overarching physical mechanism, the competitive interplay of line tension and dipole interaction and discusses several key experimental and analytical techniques characterizing the shape, size, correlation, and viscoelasticity of mesoscopic/microscopic self-assemblies on water, which is often non-trivial. Some of the recent biomedical applications, including biomimetic surface coating, contrast agents in multimodal imaging, and controlled delivery, are introduced to highlight how the unique physicochemical properties of fluorinated self-assemblies can be applied in materials science.

    • Motomu Tanaka
    • Marie Pierre Krafft
    • Andreea Pasc
    Review ArticleOpen Access
  • The exquisite structures of biological ion channels provide inspiration for designing and constructing artificial ion channels to achieve analogous functions. Hierarchically engineered heterogeneous nanochannels with excellent ion rectification, selectivity, and gating properties have attracted more and more attention. In this review, we briefly review the recent advances of hierarchically engineered nanochannel systems in terms of pore-on-pore and pore-in-pore structures, with an emphasis on the promising applications, including ion-selective transport, osmotic energy harvesting, separation, and biosensing.

    • Minmin Li
    • Yuchen Cao
    • Guangyan Qing
    Review ArticleOpen Access
  • Nanoarchitectonics concept is essential to bridge the gaps between biology and materials chemistry. Based on this fundamental principle, this review article provides pore-engineered nanoarchitectonics for cancer therapy by integrating basic descriptions and exemplifying therapy applications. This review paper briefly summarizes pore-engineered nanoarchitectonics basics according to classification based on material porosity and composition. We discuss how to design mesoporous material and highlight the appealing points of the progress in the clinical translation of mesoporous materials for cancer treatment. Nanoarchitectonics could be an important key concept for future advanced life technologies as well as currently required cancer therapy.

    • Linawati Sutrisno
    • Katsuhiko Ariga
    Review ArticleOpen Access
  • The recent advances realized in the syntheses and characterizations of both morphological- and molecular-level one-dimensional (1D) metal-halide perovskites with tunable structures, compositions, and properties, as well as optoelectronic applications are comprehensively reviewed. Furthermore, the challenges, prospects, and promising research directions are discussed, which we believe will help to accelerate the explorations of 1D metal-halide perovskites in the future.

    • Dawei Duan
    • Chuangye Ge
    • Tom Wu
    Review ArticleOpen Access