Physical sciences articles within Communications Materials

Featured

  • Article
    | Open Access

    Carbon electrode-based perovskite solar cells require a high-quality interface between the hole transport layer and the electrode. Here, lamination using an isostatic press is used to form this interface, achieving a power conversion efficiency of 16.9% for a 5.5 cm2 area device.

    • Luke J. Sutherland
    • , Juan Benitez-Rodriguez
    •  & Hasitha C. Weerasinghe
  • Article
    | Open Access

    The anomalous Hall effect and anomalous Nernst effect are signature transport features for exploring the physics of magnetic topological phases. Here, an anomalous Nernst effect of 1.8 ≈μV/K and an unconventional anomalous Hall effect which does not scale with the magnetization are observed in a metallic tetragonal antiferromagnet.

    • Kaixin Tang
    • , Ye Yang
    •  & Xianhui Chen
  • Article
    | Open Access

    Replicating the structure of natural systems is an effective approach for designing high-performance materials. Here, the structure of leak leaves is replicated in cellulose-based films, achieving optical transmittance and hydrophobicity for self-cleaning perovskite solar cells.

    • Hamidreza Daghigh Shirazi
    • , Seyed Mehran Mirmohammadi
    •  & Jaana Vapaavuori
  • Article
    | Open Access

    In-plane anisotropy of electrical conductance in 2D materials is an important element in engineering 2D devices. Here, the charge transport anisotropy at the metal contacts of hBN-encapsulated ReS2 field-effect transistors is investigated, revealing a substantial contact anisotropy ratio of up to 70 at 77 K.

    • Hyokwang Park
    • , Myeongjin Lee
    •  & Won Jong Yoo
  • Article
    | Open Access

    The presence of flat bands near the Fermi energy may lead to an increase in electron correlations and result in unconventional states. Here, non-Fermi liquid behavior and anomalous superconductivity, with a nonmonotonic two-dome-like doping dependence, are observed in Sc2Ir4-xSix and attributed to spin-orbit-coupling driven flat bands.

    • Zhengyan Zhu
    • , Yuxiang Wu
    •  & Hai-Hu Wen
  • Article
    | Open Access

    Thermally conductive nanomaterials are promising for applications in thermal management. Here, morphological control of the van der Waals contact between carbon nanotubes, by adjustment of contact positions, overlapping length, and crossing angles, allows the authors to elucidate the interfacial thermal transport and optimize heat flow at the nanoscale.

    • Dawei Li
    • , Koji Takahashi
    •  & Qin-Yi Li
  • Article
    | Open Access

    It is difficult to control electron doping in organic semiconductors because they often require dopants that are air-sensitive. Here, an ion-exchange doping method is introduced with improved ambient stability and crystallinity of the doped polymeric semiconductors compared to conventional methods.

    • Yu Yamashita
    • , Shinya Kohno
    •  & Shun Watanabe
  • Article
    | Open Access

    3D skyrmion strings are topological spin textures promising for spintronics applications, but their manipulation and dynamics are challenging to understand. Here, high-resolution 3D phase imaging reveals the melting dynamics of metastable skyrmions, accompanied by the emergence of (anti)hedgehogs, in (Fe,Ni,Pd)3P and FeGe helimagnets.

    • Xiuzhen Yu
    • , Nobuto Nakanishi
    •  & Yoshinori Tokura
  • Review Article
    | Open Access

    Wearable optical sensors offer advantages for monitoring human sweat compared to traditional electrochemistry-based approaches. Here, the working principles, advantages, and limitations of various types of optical-based devices for health monitoring of human sweat are discussed.

    • Jing Wang
    • , Yong Luo
    •  & Xueji Zhang
  • Perspective
    | Open Access

    Thermomechanical stability is a limiting factor when scaling-up perovskite solar cells. This Perspective discusses several aspects of device design that control thermomechanical degradation, including adhesion of layers and encapsulation, and the importance of accelerated degradation testing.

    • Marco Casareto
    •  & Nicholas Rolston
  • Article
    | Open Access

    Rare-earth engineering is an effective way to introduce and tune magnetism in topological materials. Here, titanium-based kagome metals RETi3Bi4 (RE = Yb, Pr, and Nd) are synthesized and characterized, whereby changing the rare earth atoms in zig-zag chains the magnetism can be tuned from nonmagnetic YbTi3Bi4 to short-range ordered PrTi3Bi4 and finally to ferromagnetic NdTi3Bi4.

    • Long Chen
    • , Ying Zhou
    •  & Gang Wang
  • Article
    | Open Access

    Nonlinear memory devices such as memristors, memcapacitors, and meminductors, are the building blocks of energy-efficient neuromorphic computing. Here, the authors propose a superconducting circuit design acting as a microwave quantum memcapacitor, which could be implemented in neuromorphic quantum computing architectures.

    • Xinyu Qiu
    • , Shubham Kumar
    •  & Francisco Albarrán-Arriagada
  • Article
    | Open Access

    Silicon spin qubits are promising for the realisation of scalable quantum computing platforms but their coherence times in natural silicon are limited by the non-zero nuclear spin of the 29Si isotope. Here, enriched 28 Si down to 2.3 ppm residual 29Si is obtained by focused ion beam implantation.

    • Ravi Acharya
    • , Maddison Coke
    •  & Richard J. Curry
  • Article
    | Open Access

    The tetragonal tungsten bronzes are promising for high-temperature energy storage applications but the mechanisms for their broad dielectric responses are unclear. Here, a comprehensive experimental and theoretical study of Sr2NaNb5O15 explains its two large dielectric anomalies in terms of structural transitions.

    • Jeremiah P. Tidey
    • , Urmimala Dey
    •  & Mark S. Senn
  • Review Article
    | Open Access

    Ammonia production from dinitrogen is challenging due to the harsh reaction conditions required and significant energy consumption. Here, this Review discusses how plasmonic materials can offer an energetically and ecologically desirable solution to dinitrogen reduction.

    • Arsha Choudhary
    • , Anubhab Halder
    •  & Vishal Govind Rao
  • Article
    | Open Access

    Ternary alloys of rare-earths and transition metals exhibit complex ferrimagnetic behavior as a function of alloy compositions. Here, X-ray magnetic circular dichroism of the Gd6(Mn1−xFex)23 series is used to explain the composition dependence of sublattice Curie temperatures in terms of element-specific magnetic moment evolution.

    • Truc Ly Nguyen
    • , Thomas Mazet
    •  & Ashish Chainani
  • Article
    | Open Access

    Magnetic Josephson junctions are important for studying the interplay between superconductivity and ferromagnetism. Here, an inverse proximity effect with tunable nanoscale spin ordering at the superconductor/ferromagnet interface of Nb-permalloy structures is observed, confirming theoretical predictions on these systems.

    • Roberta Satariano
    • , Anatoly Fjodorovich Volkov
    •  & Davide Massarotti
  • Article
    | Open Access

    Due to their plasmonic properties, silver nanoparticles are promising across a vast range of applications, from physics instrumentation to biomedicine and environmental science. Here, the photon-to-heat conversion efficiency of individual nanoparticles is elucidated by designing and fabricating an ultra-sensitive bolometer with 26 pW power resolution.

    • Hanliang Zhu
    • , Evelína Gablech
    •  & Pavel Neuzil
  • Article
    | Open Access

    Commercial adiabatic demagnetisation refrigerators are typically based on hydrated salts that are subject to corrosion and have poor thermal conductivity and low entropy at sub-Kelvin temperatures. Here, YbNi1.6Sn is identified as a metallic magnetocaloric which retains high entropy into the 100 mK regime, providing an economical and durable alternative to magnetic refrigeration.

    • Thomas Gruner
    • , Jiasheng Chen
    •  & F. Malte Grosche
  • Article
    | Open Access

    The recent claim of near-ambient superconductivity in nitrogen-doped lutetium hydrides has sparked great excitement and strong controversies in the community. Here, a comprehensive first-principles calculations study predicts the stability and critical temperatures of Lu-N-H compounds based on their composition and applied pressure.

    • Yue-Wen Fang
    • , Đorđe Dangić
    •  & Ion Errea
  • Article
    | Open Access

    Neural circuitry is important for comprehending computational mechanisms and physiology of the brain but controlling neuronal connectivity and response in 3D is challenging. Here, titanium carbide MXene-coated 3D polycaprolactone scaffolds are demonstrated to effectively control neuronal interconnection.

    • Jianfeng Li
    • , Payam Hashemi
    •  & Joyce K. S. Poon
  • Review Article
    | Open Access

    Interest in protein-based fibers is driven by their unique properties, including biocompatibility and biodegradability. This Review summarizes the synthesis and properties of biomimetic protein fibers, such as keratin, collagen, elastin and silk fibers, and their application in energy, air and water treatment, and biomedical uses.

    • Tim Schiller
    •  & Thomas Scheibel
  • Article
    | Open Access

    Polyimides are attractive dielectrics for communication devices, but there is a need to reduce their high-frequency dissipation factor. Here, a series of polyimides are fabricated and characterized, finding that those that contain ester groups and ether bonds in their molecular structure have low dissipation factors.

    • Chenggang Zhang
    • , Xiaojie He
    •  & Qinghua Lu
  • Article
    | Open Access

    Additive manufacturing is known to create microstructures that cannot be achieved by conventional alloy processing. Here, heat treatment of an additively-manufactured aluminum alloy creates a hierarchical microstructure with a large number of precipitates, achieving high strength and ductility.

    • Fei Xiao
    • , Da Shu
    •  & David H. StJohn
  • Article
    | Open Access

    Irradiation-induced void swelling is known to be higher in metals with an fcc structure compared to bcc, though the reason behind this is unclear. Here, by combining simulations and STEM imaging, stacking fault tetrahedra are found to be the cause of a high swelling rate in fcc copper.

    • Ziang Yu
    • , Yan-Ru Lin
    •  & Haixuan Xu
  • Article
    | Open Access

    Ferroelectric field-effect transistors are interesting for their non-destructive readout characteristic and energy efficiency but are difficult to integrate on silicon platforms. Here, ferroelectricity in ZrXAl1−XOY generated by compressive strain in contact with ZnO is demonstrated, showing promising multi-level memory and synaptic weight performance for neuromorphic computing devices.

    • Md Mobaidul Islam
    • , Arqum Ali
    •  & Jin Jang
  • Review Article
    | Open Access

    A key aspect of wearable devices used in personal health monitoring are the electrodes that make contact with the skin. This Review discusses how the materials and structure of electrodes used in these devices are vital to their performance, including how altering these factors might optimize their function.

    • Kyeonghee Lim
    • , Hunkyu Seo
    •  & Jang-Ung Park
  • Article
    | Open Access

    Structural transformations offer a route to control functional properties but it is difficult to design metal-organic frameworks with multiple and fast transformations. Here, a 2D metal-organic framework was designed with continuous structural transformations driven by light and used for optical modulation.

    • Yuliya A. Kenzhebayeva
    • , Nikita K. Kulachenkov
    •  & Valentin A. Milichko
  • Perspective
    | Open Access

    Biomedicinal applications of metal-organic frameworks have mainly focused on nanoscale drug delivery. This Perspective provides an overview of reproducibility issues faced when applying metal-organic framework in nanomedicine, specifically covering their preparation and in vitro analysis.

    • Ross S. Forgan
  • Review Article
    | Open Access

    Sulfide-based solid electrolyte films with high room-temperature ionic conductivity will boost the energy density of all-solid-state batteries. This Review covers the preparation methods and properties of sulfide-based composite electrolytes, while guiding future development.

    • Shenghao Li
    • , Zhihua Yang
    •  & Shuo Wang
  • Article
    | Open Access

    Rydberg excitons in cuprous oxide feature giant optical nonlinearities that may be exploited in quantum applications if suitably confined. Here, the authors show how exciton confinement can be realised by focused-ion-beam etching of Cu2O crystals without noticeable degradation of excitonic properties.

    • Anindya Sundar Paul
    • , Sai Kiran Rajendran
    •  & Hamid Ohadi
  • Article
    | Open Access

    The Dicke model, describing the cooperative coupling of an ensemble of two-level atoms with a single-mode light field, has a rich phenomenology in quantum optics and quantum information, but its analytical or numerical solution is beyond current reach. Here, a solid-state quantum simulator of an extended Dicke model is achieved using ErFeO3 crystals, where terahertz spectroscopy and magnetocaloric effect measurements reveal an atomically ordered phase in addition to the expected superradiant and normal phases.

    • Nicolas Marquez Peraca
    • , Xinwei Li
    •  & Junichiro Kono
  • Review Article
    | Open Access

    Human breath contains a vast amount of information that might be used to indicate respiratory and cardiovascular health. This Review summarizes and discusses recent advances in wearable breath sensors for monitoring breath temperature, humidity and airflow, as well as biomarker presence.

    • Dohyung Kim
    • , Jinwoo Lee
    •  & Seung Hwan Ko
  • Article
    | Open Access

    Magnetic ordering in 2D materials represents a promising platform for data storage, computing, and sensing. Here, nanometer scale imaging of few-layer Cr2Ge2Te6 reveals its thickness-dependent magnetic textures such as labyrinth domains and skyrmionic bubbles.

    • Andriani Vervelaki
    • , Kousik Bagani
    •  & Martino Poggio
  • Article
    | Open Access

    Metallic copper is a potent antimicrobial agent against microorganisms but its coating on high-touch surfaces reduces their optical transparency. Here, a transparent antimicrobial nanostructured copper surface is reported with >99.9 % antimicrobial effectiveness and high transmittance.

    • Christina Graham
    • , Alessia Mezzadrelli
    •  & Valerio Pruneri
  • Article
    | Open Access

    Metal-organic frameworks are versatile materials but typically suffer from poor electrical conductivity. Here, a patterning technique allows controlled metal-organic framework growth on predefined areas of functionalized carbon nanotube for increased conductivity.

    • Marvin J. Dzinnik
    • , Necmettin E. Akmaz
    •  & Rolf J. Haug