Research articles

Filter By:

Year
  • Quantum dots are a promising host for spin-based qubits. Whereas nuclear-field fluctuations adversely affect electron-spin coherence, the smaller hyperfine interaction between holes and nuclei makes holes a promising alternative. A sensitive measurement of the hyperfine constant of the holes in different quantum-dot material systems now demonstrates how this interaction can be tuned and perhaps further reduced.

    • E. A. Chekhovich
    • M. M. Glazov
    • A. I. Tartakovskii
    Letter
  • The elusive effects of quantum gravity could be betrayed by subtle deviations from standard quantum mechanics. An experiment using the gravitational wave bar detector AURIGA explores the limits of quantum gravity-induced modifications in the ground state of a mechanical oscillator cooled to the sub-millikelvin regime.

    • Francesco Marin
    • Francesco Marino
    • Jean-Pierre Zendri
    Letter
  • Topological insulators are now shown to be protected not only by time-reversal symmetry, but also by crystal lattice symmetry. By accounting for the crystalline symmetries, additional topological insulators can be predicted.

    • Robert-Jan Slager
    • Andrej Mesaros
    • Jan Zaanen
    Article
  • A time-dependent study of the effective temperature of carriers in impurity-free graphene now indicates that a disorder-assisted mechanism is responsible for cooling hot electrons. Observation of this so-called supercollision contradicts the idea that electron–phonon interactions dominate cooling.

    • Matt W. Graham
    • Su-Fei Shi
    • Paul L. McEuen
    Article
  • Charge transport is usually limited by collisions between the carriers, impurities and/or phonons. Collisions involving three bodies are generally much rarer. A study now reveals, however, that such supercollisions can play an important role in the properties of graphene.

    • A. C. Betz
    • S. H. Jhang
    • B. Plaçais
    Article
  • Many-particle entangled states and entanglement between continuous properties are valuable resources for quantum information, but are notoriously difficult to generate. An experiment now entangles the energy and emission times of three photons, creating generalized Einstein–Podolsky–Rosen correlations.

    • L. K. Shalm
    • D. R. Hamel
    • T. Jennewein
    Letter
  • Photonic crystals efficiently control wave propagation on a wavelength scale, but this means they can become very large when long wavelengths are involved. Metamaterials made of resonant unit cells can confine and guide waves even at scales far below their wavelength.

    • Fabrice Lemoult
    • Nadège Kaina
    • Geoffroy Lerosey
    Article
  • Liquid water inclusions in quartz can withstand negative pressures in excess of −100 MPa. Other techniques report much lower thresholds—suggesting that water in inclusions is stabilized by impurity effects. Experiments on a single inclusion in quartz now provide evidence consistent with a homogeneous mechanism for cavitation.

    • Mouna El Mekki Azouzi
    • Claire Ramboz
    • Frédéric Caupin
    Letter
  • In the highly degenerate spin-ice ground state, flipped spins give rise to magnetic charges, or monopoles, which form a measurable current in a magnetic field. The low-temperature relaxation dynamics of spin-ice materials now reveal that defects can impede monopole flow—creating a magnetic analogue of electrical resistance.

    • H. M. Revell
    • L. R. Yaraskavitch
    • J. B. Kycia
    Letter
  • Topological entanglement entropy provides a robust measure for detecting the long-range entanglement that characterizes quantum ground states displaying topological order. A new method for calculating this entropy isolates minimally entangled states from the ground states of a topological phase—offering a reliable test for identifying topological spin liquids.

    • Hong-Chen Jiang
    • Zhenghan Wang
    • Leon Balents
    Article
  • Long-distance quantum communication is limited by optical absorption and scattering. A noiseless amplifier for photonic qubits coherently encoded across two optical modes is now demonstrated, which could combat this negative effect. The method enabled a fivefold increase in the transmission fidelity of the polarization state of a single photon.

    • S. Kocsis
    • G. Y. Xiang
    • G. J. Pryde
    Letter
  • Fast particles propagating through a classical medium give rise to shock waves. Calculations now uncover the surprising behaviour of particles in one-dimensional quantum fluids: a fast particle will never come to a full stop, and a supersonic particle will propagate through the medium undergoing long-lived oscillations.

    • Charles J. M. Mathy
    • Mikhail B. Zvonarev
    • Eugene Demler
    Article
  • Enhanced control of the nuclear spin orientation of rare isotopes has now been demonstrated. This technique is considerably more efficient than traditional methods and significantly broadens the domain of accessible nuclei, promising insights in nuclear physics and applications in material science.

    • Yuichi Ichikawa
    • Hideki Ueno
    • Mustafa M. Rajabali
    Article