Research articles

Filter By:

Article Type
Year
  • Manganese carbonyl complexes are promising electrocatalysts for CO2 reduction, but the intricate mechanisms are difficult to probe. Here, vibrational sum-frequency generation spectroscopy is used to detect the transient catalytic intermediates, providing experimental evidence for the mechanism and demonstrating the utility of the analytical approach for molecular electrocatalytic processes in general.

    • Gaia Neri
    • James. J. Walsh
    • Alexander J. Cowan
    Article
  • Organoboron compounds are versatile intermediates in organic chemistry, and as such the selective introduction of multiple boron-containing groups is of high interest. Here Shi and co-workers report a copper-catalysed method that can selectively introduce two, three or four boronate groups into common starting materials by simply making minor modifications to the reaction conditions.

    • Jiefeng Hu
    • Yue Zhao
    • Zhuangzhi Shi
    Article
  • Improving the stability of proteins for biotechnological applications is challenging. Now, Gillam and co-workers show that the thermal stability and longevity of enzymes can be remarkably enhanced in a single step from sequences of recent ancestors of primitive vertebrates that existed in mild conditions.

    • Yosephin Gumulya
    • Jong-Min Baek
    • Elizabeth M. J. Gillam
    Article
  • Nature’s oxygen-evolving complex of photosystem II is a multinuclear manganese cluster. Whether mononuclear manganese can also efficiently catalyse water oxidation has been a long-standing question. Now, Li and co-workers show that single atoms of manganese can be anchored on nitrogen-doped graphene to catalyse the oxygen evolution reaction. Credit: Water image Frankie Angel / Alamy Stock Photo.

    • Jingqi Guan
    • Zhiyao Duan
    • Can Li
    Article
  • The electrochemical transformation of CO2 into liquid fuels is a major challenge. Now, Jaramillo, Hahn and co-workers present a Au/Cu catalyst highly active to C2+ alcohols at low overpotentials as a result of a tandem mechanism where CO2 is reduced to CO on Au and further reduced to C2+ alcohols on nearby Cu.

    • Carlos G. Morales-Guio
    • Etosha R. Cave
    • Thomas F. Jaramillo
    Article
  • Organocatalysed photoredox-mediated atom transfer radical polymerization is a very promising method, although many challenges still lie ahead. Now, Kwon, Gierschner, Kim and co-workers present a computer-aided-design strategy to identify organic photoredox catalysts for this process. The success of the design strategy is demonstrated by polymerizations of methyl methacrylate and styrene.

    • Varun Kumar Singh
    • Changhoon Yu
    • Min Sang Kwon
    Article
  • Although mechanistic understanding can drive new reactivity development, the key bond-forming and -breaking steps in catalytic cycles are often sufficiently fast to elude observation. Here, the authors photochemically produce a key intermediate in Mn-catalysed C–H functionalization, and follow the subsequent steps—spanning processes occurring over seven orders of magnitude in time—using time-resolved infrared spectroscopy.

    • L. Anders Hammarback
    • Ian P. Clark
    • Jason M. Lynam
    Article
  • The precise understanding of the active phase under reaction conditions at the molecular level is crucial for the design of improved catalysts. Now, Strasser, Jones and colleagues correlate the high activity of IrNi@IrOx core–shell nanoparticles with the amount of lattice vacancies produced by the nickel leaching process that takes place before and during water oxidation, and elucidate the underlying structural-electronic effects.

    • Hong Nhan Nong
    • Tobias Reier
    • Peter Strasser
    Article
  • Due to its ready availability and low cost, copper is an attractive metal for the homogeneous reduction of CO2 to formate. However, although CO2 can readily insert into copper hydrides to produce metal-bound formate, subsequent regeneration of the catalytic species with H2 is more challenging. Here a dual strategy is used, whereby a copper hydride activates CO2 and a Lewis pair heterolytically splits H2, leading to dramatically improved performance.

    • Erik A. Romero
    • Tianxiang Zhao
    • Guy Bertrand
    Article
  • Lignin-first approaches, which prioritize lignin upgrade over cellulose, can open the way to full biomass valorization, but are still hampered by the need of harsh reaction conditions and difficulties in catalyst recovery. Now, a photocatalytic strategy based on the use of cadmium sulfide quantum dots is reported that overcomes these limitations.

    • Xuejiao Wu
    • Xueting Fan
    • Ye Wang
    Article
  • Post-synthesis refining of Fischer–Tropsch products is a costly but necessary step to adjust the selectivity of the process towards specific fuels. Now, a catalytic system based on a cobalt-loaded Y-type zeolite is reported that can be tuned to selectively produce gasoline, jet fuel or diesel fuel directly from syngas.

    • Jie Li
    • Yingluo He
    • Noritatsu Tsubaki
    Article
  • Knowledge of the active sites in catalysts—including the sites that form under working conditions—is vital for future design and development. Here, the authors track the atomic-scale changes in a series of well-defined cobalt-based oxide electrocatalysts, showing that the structurally distinct catalysts develop a similar structural motif as they transform into the catalytically active state.

    • Arno Bergmann
    • Travis E. Jones
    • Peter Strasser
    Article
  • Despite its potential, the visible light-triggered photocatalytic oxidation of toluene remains difficult due to the lack of efficient and scalable catalytic strategies. Now, a photochromic Bi2WO6–x/amorphous BiOCl composite is reported with the ability to oxidize toluene into benzaldehyde and benzoic acid with outstanding rates and quantum efficiencies.

    • Xing Cao
    • Zheng Chen
    • Yadong Li
    Article
  • Ta3N5 is a semiconductor with very promising photocatalytic properties. However, performing overall water splitting with this material has remained elusive. Now, Domen and co-workers report a method for the synthesis of defect-free single-crystal Ta3N5 nanorods capable of splitting water into hydrogen and oxygen in the presence of a co-catalyst.

    • Zheng Wang
    • Yasunobu Inoue
    • Kazunari Domen
    Article
  • Microbial production of haem for applications in healthcare and food supplement industry requires high-performing strains. Here, Lee and co-workers report secretory production of free haem by metabolically engineered Escherichia coli strains to produce up to 239 mg l−1 total haem.

    • Xin Rui Zhao
    • Kyeong Rok Choi
    • Sang Yup Lee
    Article
  • Small-pore zeolites that engender high selectivity for light olefins in the conversion of methanol to olefins deactivate rapidly due to the accumulation of unreactive carbonaceous deposits. Now, experiments show that high-pressure hydrogen added to the methanol feed can substantially enhance catalyst lifetime without compromising selectivity.

    • Sukaran S. Arora
    • Davy L. S. Nieskens
    • Aditya Bhan
    Article
  • The low solubility of CO in aqueous electrolytes limits the implementation of CO electrolysers, since low current densities are typically achieved despite the fact that they deliver rather high Faradaic efficiencies to multi-carbon products. Now, Jiao and co-workers report a CO flow electrolyser with a well-controlled electrode–electrolyte interface that can achieve multi-carbon Faradaic efficiencies of 91% with a partial current density of 630 mA cm–2.

    • Matthew Jouny
    • Wesley Luc
    • Feng Jiao
    Article