Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Sustainable microalgae extraction for proactive water bloom prevention

Abstract

The recurring and unpredictable occurrences of water blooms have emerged as an escalating global threat to both the environment and water resources. Superior to the unsatisfactory post-bloom treatment techniques, the proactive strategy of reducing microalgae density in an economical and safe manner holds promise for effective water bloom control and prevention; however, it remains an important challenge. Here we report an efficient microalgae extraction mediated by a sustainable microalgae grabber (SMAG), which fully integrates tailored water depth suspending, electrostatic microalgae capture and magnetic collection. More importantly, the photothermal conversion capability of SMAG allows for the denaturation of extracellular polymeric substances, enabling on-demand desorption of microalgae for desired multiple reuses. Through the cyclic operation of these recyclable SMAGs, it demonstrates a remarkable microalgae removal efficiency of 94% and photothermal-driven spontaneous desorption, with a recovery efficiency of over 90%. Furthermore, a customized self-cruising floating device has been designed for the large-scale implementation of SMAGs, showcasing solar-powered sustainable microalgae extraction and harvesting in natural water bodies. The customizable and scalable SMAG offers a refreshing perspective in reinvigorating industries related to proactive water bloom prevention and microalgae resource capitalization.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Design principle of recyclable SMAGs for sustainable microalgae extraction.
Fig. 2: Construction and characterizations of the functional SMAGs.
Fig. 3: Investigation of the adsorption behaviour of microalgae on the SMAGs.
Fig. 4: Mechanism of photothermal-enabled desorption and deactivation of microalgae.
Fig. 5: SMAGs-mediated microalgae extraction in outdoor operations.

Similar content being viewed by others

Data availability

The data supporting the findings of this study are available within the paper (and its Supplementary Information).

References

  1. Maso, M. & Garcés, E. Harmful microalgae blooms (HAB); problematic and conditions that induce them. Mar. Pollut. Bull. 53, 620–630 (2006).

    Article  CAS  PubMed  Google Scholar 

  2. Sellner, K. G., Doucette, G. J. & Kirkpatrick, G. J. Harmful algal blooms: causes, impacts and detection. J. Ind. Microbiol. Biotechnol. 30, 383–406 (2003).

    Article  CAS  PubMed  Google Scholar 

  3. Hou, X. et al. Global mapping reveals increase in lacustrine algal blooms over the past decade. Nat. Geosci. 15, 130–134 (2022).

    Article  ADS  CAS  Google Scholar 

  4. Berdalet, E. et al. Marine harmful algal blooms, human health and wellbeing: challenges and opportunities in the 21st century. J. Mar. Biol. Assoc. UK 96, 61–91 (2016).

    Article  Google Scholar 

  5. Chapra, S. C. et al. Climate change impacts on harmful algal blooms in US freshwaters: a screening-level assessment. Environ. Sci. Technol. 51, 8933–8943 (2017).

    Article  ADS  CAS  PubMed  Google Scholar 

  6. Riebesell, U. et al. Toxic algal bloom induced by ocean acidification disrupts the pelagic food web. Nat. Clim. Change 8, 1082–1086 (2018).

    Article  ADS  CAS  Google Scholar 

  7. Dai, Y. et al. Coastal phytoplankton blooms expand and intensify in the 21st century. Nature 615, 280–284 (2023).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  8. Treuer, G., Kirchhoff, C., Lemos, M. C. & McGrath, F. Challenges of managing harmful algal blooms in US drinking water systems. Nat. Sustain. 4, 958–964 (2021).

    Article  Google Scholar 

  9. Glibert, P. M. & Burford, M. A. Globally changing nutrient loads and harmful algal blooms: recent advances, new paradigms, and continuing challenges. Oceanography 30, 58–69 (2017).

    Article  Google Scholar 

  10. Anantapantula, S. S. & Wilson, A. E. Most treatments to control freshwater algal blooms are not effective: meta-analysis of field experiments. Water Res. 243, 120342 (2023).

    Article  CAS  PubMed  Google Scholar 

  11. Williams, P. Jl. B. & Laurens, L. M. Microalgae as biodiesel & biomass feedstocks: review & analysis of the biochemistry, energetics & economics. Energy Environ. Sci. 3, 554–590 (2010).

    Article  CAS  Google Scholar 

  12. Qu, M. et al. Algal blooms: proactive strategy. Science 346, 175–176 (2014).

    Article  ADS  CAS  PubMed  Google Scholar 

  13. Darvehei, P., Bahri, P. A. & Moheimani, N. R. Model development for the growth of microalgae: a review. Renew. Sust. Energy Rev. 97, 233–258 (2018).

    Article  CAS  Google Scholar 

  14. Bhola, V., Swalaha, F., Ranjith Kumar, R., Singh, M. & Bux, F. Overview of the potential of microalgae for CO2 sequestration. Int. J. Environ. Sci. Technol. 11, 2103–2118 (2014).

    Article  CAS  Google Scholar 

  15. Zhao, B. & Su, Y. Process effect of microalgal–carbon dioxide fixation and biomass production: a review. Renew. Sust. Energy Rev. 31, 121–132 (2014).

    Article  CAS  Google Scholar 

  16. Zhu, L. Biorefinery as a promising approach to promote microalgae industry: an innovative framework. Renew. Sust. Energy Rev. 41, 1376–1384 (2015).

    Article  Google Scholar 

  17. Barros, A. I., Gonçalves, A. L., Simões, M. & Pires, J. C. Harvesting techniques applied to microalgae: a review. Renew. Sust. Energy Rev. 41, 1489–1500 (2015).

    Article  Google Scholar 

  18. Singh, G. & Patidar, S. Microalgae harvesting techniques: a review. J. Environ. Manage. 217, 499–508 (2018).

    Article  PubMed  Google Scholar 

  19. Abu-Shamleh, A. & Najjar, Y. S. Optimization of mechanical harvesting of microalgae by centrifugation for biofuels production. Biomass Bioenergy 143, 105877 (2020).

    Article  CAS  Google Scholar 

  20. Zhao, F. et al. Microalgae harvesting by an axial vibration membrane: the mechanism of mitigating membrane fouling. J. Membrane Sci. 508, 127–135 (2016).

    Article  CAS  Google Scholar 

  21. Zhao, Z., Muylaert, K. & Vankelecom, I. F. Combining patterned membrane filtration and flocculation for economical microalgae harvesting. Water Res. 198, 117181 (2021).

    Article  CAS  PubMed  Google Scholar 

  22. Laamanen, C. A., Ross, G. M. & Scott, J. A. Flotation harvesting of microalgae. Renew. Sust. Energy Rev. 58, 75–86 (2016).

    Article  Google Scholar 

  23. Alkarawi, M. A., Caldwell, G. S. & Lee, J. G. Continuous harvesting of microalgae biomass using foam flotation. Algal Res. 36, 125–138 (2018).

    Article  Google Scholar 

  24. Vandamme, D., Foubert, I. & Muylaert, K. Flocculation as a low-cost method for harvesting microalgae for bulk biomass production. Trends Biotechnol. 31, 233–239 (2013).

    Article  CAS  PubMed  Google Scholar 

  25. Matter, I. A. et al. Flocculation harvesting techniques for microalgae: a review. Appl. Sci. 9, 3069 (2019).

    Article  CAS  Google Scholar 

  26. Balaji-Prasath, B. et al. Methods to control harmful algal blooms: a review. Environ. Chem. Lett. 20, 3133–3152 (2022).

    Article  CAS  Google Scholar 

  27. Suparmaniam, U. et al. Insights into the microalgae cultivation technology and harvesting process for biofuel production: a review. Renew. Sust. Energy Rev. 115, 109361 (2019).

    Article  CAS  Google Scholar 

  28. Van Dolah, F. M. Marine algal toxins: origins, health effects, and their increased occurrence. Environ. Health Perspect. 108, 133–141 (2000).

    Article  PubMed  PubMed Central  Google Scholar 

  29. Li, N. et al. Electrostatic charges on microalgae surface: mechanism and applications. J. Environ. Chem. Eng. 10, 107516 (2022).

    Article  CAS  Google Scholar 

  30. Zhang, C. et al. Synthesis of iron nanometallic glasses and their application in cancer therapy by a localized Fenton reaction. Angew. Chem. Int. Ed. 55, 2101–2106 (2016).

    Article  CAS  Google Scholar 

  31. Wang, X. Q. et al. Nanophotonic-engineered photothermal harnessing for waste heat management and pyroelectric generation. ACS Nano 11, 10568–10574 (2017).

    Article  CAS  PubMed  Google Scholar 

  32. Grinstaff, M. W., Salamon, M. B. & Suslick, K. S. Magnetic properties of amorphous iron. Phys. Rev. B 48, 269 (1993).

    Article  ADS  CAS  Google Scholar 

  33. Zhang, C. et al. Cryogenic exfoliation of non‐layered magnesium into two‐dimensional crystals. Angew. Chem. Int. Ed. 58, 8814–8818 (2019).

    Article  CAS  Google Scholar 

  34. Harke, M. J. et al. A review of the global ecology, genomics, and biogeography of the toxic cyanobacterium, microcystis spp. Harmful Algae 54, 4–20 (2016).

    Article  PubMed  Google Scholar 

  35. Xiao, R. & Zheng, Y. Overview of microalgal extracellular polymeric substances (EPS) and their applications. Biotechnol. Adv. 34, 1225–1244 (2016).

    Article  CAS  PubMed  Google Scholar 

  36. Domínguez-Martín, M. A. et al. Structures of a phycobilisome in light-harvesting and photoprotected states. Nature 609, 835–845 (2022).

    Article  ADS  PubMed  Google Scholar 

  37. Zakar, T., Laczko-Dobos, H., Toth, T. N. & Gombos, Z. Carotenoids assist in cyanobacterial photosystem II assembly and function. Front. Plant Sci. 7, 295 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  38. Maxwell, K. & Johnson, G. N. Chlorophyll fluorescence-a practical guide. J. Exp. Bot. 51, 659–668 (2000).

    Article  CAS  PubMed  Google Scholar 

  39. Béchet, Q., Laviale, M., Arsapin, N., Bonnefond, H. & Bernard, O. Modeling the impact of high temperatures on microalgal viability and photosynthetic activity. Biotechnol. Biofuels 10, 1–11 (2017).

    Article  Google Scholar 

  40. Coskun, C., Oktay, Z. & Dincer, I. Estimation of monthly solar radiation distribution for solar energy system analysis. Energy 36, 1319–1323 (2011).

    Article  Google Scholar 

  41. Zhang, C., Lu, W., Xu, Y., Zeng, K. & Ho, G. W. Mechanistic formulation of inorganic membranes at the air–liquid interface. Nature 616, 293–299 (2023).

    Article  ADS  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the Zhejiang Provincial Natural Science Foundation of China (grant no. LY22B030011 (Y.X.)) and a National Natural Science Foundation of China (grant no. 21805243 (Y.X.)).

Author information

Authors and Affiliations

Authors

Contributions

Y.X. conceived the idea and supervised the project, analysed the data and wrote the paper. M.W. performed the experiments with assistance from X.X. C.Z. and G.W.H. contributed to the mechanistic discussion, device design and paper revision. H.F. offered some suggestions.

Corresponding authors

Correspondence to Ghim Wei Ho or Yingfeng Xu.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Water thanks Yanhui Ao, Pratyoosh Shukla, Wen Zhang and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Notes 1–7, Figs. 1–33, Tables 1–3 and references.

Source data

Source Data Fig. 2

Statistical source data.

Source Data Fig. 3

Statistical source data.

Source Data Fig. 4

Statistical source data.

Source Data Fig. 5

Statistical source data.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, M., Zhang, C., Xie, X. et al. Sustainable microalgae extraction for proactive water bloom prevention. Nat Water 2, 172–182 (2024). https://doi.org/10.1038/s44221-024-00195-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s44221-024-00195-9

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing