Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Nuclear envelope disruption triggers hallmarks of aging in lung alveolar macrophages

Abstract

Aging is characterized by gradual immune dysfunction and increased disease risk. Genomic instability is considered central to the aging process, but the underlying mechanisms of DNA damage are insufficiently defined. Cells in confined environments experience forces applied to their nucleus, leading to transient nuclear envelope rupture (NER) and DNA damage. Here, we show that Lamin A/C protects lung alveolar macrophages (AMs) from NER and hallmarks of aging. AMs move within constricted spaces in the lung. Immune-specific ablation of lamin A/C results in selective depletion of AMs and heightened susceptibility to influenza virus-induced pathogenesis and lung cancer growth. Lamin A/C-deficient AMs that persist display constitutive NER marks, DNA damage and p53-dependent senescence. AMs from aged wild-type and from lamin A/C-deficient mice share a lysosomal signature comprising CD63. CD63 is required to limit damaged DNA in macrophages. We propose that NER-induced genomic instability represents a mechanism of aging in AMs.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Lamin A/C protects alveolar macrophages from depletion.
Fig. 2: Loss of alveolar macrophages is caused by a p53-dependent response to DNA damage.
Fig. 3: Constricted movement, nuclear envelope rupture and DNA damage in alveolar macrophages.
Fig. 4: A lysosomal/CD63 response is induced by DNA damage.
Fig. 5: CD63 is required for clearance of damaged DNA in macrophages.
Fig. 6: A signature of aging in lamin A/C-deficient alveolar macrophages.
Fig. 7: Lamin A/C protects against the acquisition of hallmarks of aging in alveolar macrophages.
Fig. 8: Lamin A/C protects against influenza virus infection and lung cancer growth.

Similar content being viewed by others

Data availability

Gene expression data are deposited at the Gene Expression Omnibus under accession numbers GSE146080 and GSE211713.

References

  1. Schneider, J. L. et al. The aging lung: physiology, disease, and immunity. Cell 184, 1990–2019 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Nikolich-Žugich, J. The twilight of immunity: emerging concepts in aging of the immune system. Nat. Immunol. 19, 10–19 (2018).

    Article  PubMed  Google Scholar 

  3. Yousefzadeh, M. J. et al. An aged immune system drives senescence and ageing of solid organs. Nature 594, 100–105 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Desdín-Micó, G. et al. T cells with dysfunctional mitochondria induce multimorbidity and premature senescence. Science 368, 1371–1376 (2020).

    Article  PubMed  Google Scholar 

  5. López-Otín, C., Blasco, M. A., Partridge, L., Serrano, M. & Kroemer, G. The hallmarks of aging. Cell 153, 1194–1217 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  6. Schumacher, B., Pothof, J., Vijg, J. & Hoeijmakers, J. H. J. The central role of DNA damage in the ageing process. Nature 592, 695–703 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Luster, A. D., Alon, R. & von Andrian, U. H. Immune cell migration in inflammation: present and future therapeutic targets. Nat. Immunol. 6, 1182–1190 (2005).

    Article  CAS  PubMed  Google Scholar 

  8. Raab, M. et al. ESCRT III repairs nuclear envelope ruptures during cell migration to limit DNA damage and cell death. Science 352, 359–362 (2016).

    Article  CAS  PubMed  Google Scholar 

  9. Pflicke, H. & Sixt, M. Preformed portals facilitate dendritic cell entry into afferent lymphatic vessels. J. Exp. Med. 206, 2925–2935 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Garcia-Arcos, J. M. et al. Reconstitution of cell migration at a glance. J. Cell Sci. 132, jcs225565 (2019).

    Article  PubMed  Google Scholar 

  11. Nader, G. P., de, F., Williart, A. & Piel, M. Nuclear deformations, from signaling to perturbation and damage. Curr. Opin. Cell Biol. 72, 137–145 (2021).

    Article  CAS  PubMed  Google Scholar 

  12. Denais, C. M. et al. Nuclear envelope rupture and repair during cancer cell migration. Science 352, 353–358 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Irianto, J. et al. DNA damage follows repair factor depletion and portends genome variation in cancer cells after pore migration. Curr. Biol. 27, 210–223 (2017).

    Article  CAS  PubMed  Google Scholar 

  14. Cho, S. et al. Mechanosensing by the lamina protects against nuclear rupture, DNA damage, and cell-cycle arrest. Dev. Cell 49, 920–935 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Earle, A. J. et al. Mutant lamins cause nuclear envelope rupture and DNA damage in skeletal muscle cells. Nat. Mater. 19, 464–473 (2020).

    Article  CAS  PubMed  Google Scholar 

  16. Shah, P. et al. Nuclear deformation causes DNA damage by increasing replication stress. Curr. Biol. 31, 753–765 (2021).

    Article  CAS  PubMed  Google Scholar 

  17. Xia, Y. et al. Nuclear rupture at sites of high curvature compromises retention of DNA repair factors. J. Cell Biol. 217, 3796–3808 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Nader, G. P. et al. Compromised nuclear envelope integrity drives TREX1-dependent DNA damage and tumor cell invasion. Cell 184, 5230–5246 (2021).

    Article  CAS  PubMed  Google Scholar 

  19. Gentili, M. et al. The N-terminal domain of cGAS determines preferential association with centromeric DNA and innate immune activation in the nucleus. Cell Rep. 26, 2377–2393 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Guey, B. et al. BAF restricts cGAS on nuclear DNA to prevent innate immune activation. Science 369, 823–828 (2020).

    Article  CAS  PubMed  Google Scholar 

  21. Lan, Y. Y., Londono, D., Bouley, R., Rooney, M. S. & Hacohen, N. Dnase2a deficiency uncovers lysosomal clearance of damaged nuclear DNA via autophagy. Cell Rep. 9, 180–192 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Banerjee, D. et al. A non-canonical, interferon-independent signaling activity of cGAMP triggers DNA damage response signaling. Nat. Commun. 12, 6207 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  23. Moiseeva, O., Mallette, F. A., Mukhopadhyay, U. K., Moores, A. & Ferbeyre, G. DNA damage signaling and p53-dependent senescence after prolonged β-interferon stimulation. Mol. Biol. Cell 17, 1583–1592 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Morales, A. J. et al. A type I IFN-dependent DNA damage response regulates the genetic program and inflammasome activation in macrophages. Elife 6, e24655 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  25. Li, Y. et al. Nuclear envelope rupture and NET formation is driven by PKCα‐mediated lamin B disassembly. EMBO Rep. 21, e48779 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Thiam, H. R. et al. NETosis proceeds by cytoskeleton and endomembrane disassembly and PAD4-mediated chromatin decondensation and nuclear envelope rupture. Proc. Natl Acad. Sci. USA 117, 7326–7337 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. De Vos, W. H. et al. Repetitive disruptions of the nuclear envelope invoke temporary loss of cellular compartmentalization in laminopathies. Hum. Mol. Genet. 20, 4175–4186 (2011).

    Article  PubMed  Google Scholar 

  28. Vargas, J. D., Hatch, E. M., Anderson, D. J. & Hetzer, M. W. Transient nuclear envelope rupturing during interphase in human cancer cells. Nucleus 3, 88–100 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  29. Saez, A. et al. Lamin A/C and the immune system: one intermediate filament, many faces. Int. J. Mol. Sci. 21, 6109 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Kim, Y. & Zheng, Y. Generation and characterization of a conditional deletion allele for Lmna in mice. Biochem. Biophys. Res. Commun. 440, 8–13 (2013).

    Article  CAS  PubMed  Google Scholar 

  31. de Boer, J. et al. Transgenic mice with hematopoietic and lymphoid specific expression of Cre. Eur. J. Immunol. 33, 314–325 (2003).

    Article  PubMed  Google Scholar 

  32. Grigoryan, A. et al. Lamin A/C regulates epigenetic and chromatin architecture changes upon aging of hematopoietic stem cells. Genome Biol. 19, 189 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  33. Hashimoto, D. et al. Tissue-resident macrophages self-maintain locally throughout adult life with minimal contribution from circulating monocytes. Immunity 38, 792–804 (2013).

    Article  CAS  PubMed  Google Scholar 

  34. Kopf, M., Schneider, C. & Nobs, S. P. The development and function of lung-resident macrophages and dendritic cells. Nat. Immunol. 16, 36–44 (2015).

    Article  CAS  PubMed  Google Scholar 

  35. Sieweke, M. H. & Allen, J. E. Beyond stem cells: self-renewal of differentiated macrophages. Science 342, 1242974 (2013).

    Article  PubMed  Google Scholar 

  36. Liu, Z. et al. Fate mapping via Ms4a3-expression history traces monocyte-derived cells. Cell 178, 1509–1525 (2019).

    Article  CAS  PubMed  Google Scholar 

  37. Misharin, A. V. et al. Monocyte-derived alveolar macrophages drive lung fibrosis and persist in the lung over the lifespan. J. Exp. Med. 214, 2387–2404 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Chakarov, S. et al. Two distinct interstitial macrophage populations coexist across tissues in specific subtissular niches. Science 363, eaau0964 (2019).

    Article  CAS  PubMed  Google Scholar 

  39. Raredon, M. S. B. et al. Single-cell connectomic analysis of adult mammalian lungs. Sci. Adv. 5, eaaw3851 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Gorgoulis, V. et al. Cellular senescence: defining a path forward. Cell 179, 813–827 (2019).

    Article  CAS  PubMed  Google Scholar 

  41. Yang, H., Wang, H., Ren, J., Chen, Q. & Chen, Z. J. cGAS is essential for cellular senescence. Proc. Natl Acad. Sci. USA 114, E4612–E4620 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Gluck, S. et al. Innate immune sensing of cytosolic chromatin fragments through cGAS promotes senescence. Nat. Cell Biol. 19, 1061–1070 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Reinhardt, H. C. & Schumacher, B. The p53 network: cellular and systemic DNA damage responses in aging and cancer. Trends Genet. 28, 128–136 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. DeMicco, A., Yang-Iott, K. & Bassing, C. H. Somatic inactivation of Tp53 in hematopoietic stem cells or thymocytes predisposes mice to thymic lymphomas with clonal translocations. Cell Cycle 12, 3307–3316 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Rodero, M. P. et al. Immune surveillance of the lung by migrating tissue monocytes. eLife 4, e07847 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  46. Westphalen, K. et al. Sessile alveolar macrophages communicate with alveolar epithelium to modulate immunity. Nature 506, 503–506 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Neupane, A. S. et al. Patrolling alveolar macrophages conceal bacteria from the immune system to maintain homeostasis. Cell 183, 110–125 (2020).

    Article  CAS  PubMed  Google Scholar 

  48. Amy, R. W., Bowes, D., Burri, P. H., Haines, J. & Thurlbeck, W. M. Postnatal growth of the mouse lung. J. Anat. 124, 131–151 (1977).

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Halfmann, C. T. et al. Repair of nuclear ruptures requires barrier-to-autointegration factor. J. Cell Biol. 218, 2136–2149 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Haraguchi, T. et al. Live cell imaging and electron microscopy reveal dynamic processes of BAF-directed nuclear envelope assembly. J. Cell Sci. 121, 2540–2554 (2008).

    Article  CAS  PubMed  Google Scholar 

  51. Ding, P. et al. Intracellular complement C5a/C5aR1 stabilizes β-catenin to promote colorectal tumorigenesis. Cell Rep. 39, 110851 (2022).

    Article  CAS  PubMed  Google Scholar 

  52. Pols, M. S. & Klumperman, J. Trafficking and function of the tetraspanin CD63. Exp. Cell. Res. 315, 1584–1592 (2009).

    Article  CAS  PubMed  Google Scholar 

  53. Borghesan, M. et al. Small extracellular vesicles are key regulators of non-cell autonomous intercellular communication in senescence via the interferon protein IFITM3. Cell Rep. 27, 3956–3971 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Yokoi, A. et al. Mechanisms of nuclear content loading to exosomes. Sci. Adv. 5, eaax8849 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Lanna, A. et al. An intercellular transfer of telomeres rescues T cells from senescence and promotes long-term immunological memory. Nat. Cell Biol. 24, 1461–1474 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Shen, Y. J. et al. Genome-derived cytosolic DNA mediates type I interferon-dependent rejection of B cell lymphoma cells. Cell Rep. 11, 460–473 (2015).

    Article  CAS  PubMed  Google Scholar 

  57. Xin, L., Jiang, T. T., Kinder, J. M., Ertelt, J. M. & Way, S. S. Infection susceptibility and immune senescence with advancing age replicated in accelerated aging Lmna Dhe mice. Aging Cell 14, 1122–1126 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Krishnarajah, S. et al. Single-cell profiling of immune system alterations in lymphoid, barrier and solid tissues in aged mice. Nat. Aging 2, 74–89 (2021).

    Article  PubMed  Google Scholar 

  59. Wong, C. K. et al. Aging impairs alveolar macrophage phagocytosis and increases influenza-induced mortality in mice. J. Immunol. 199, 1060–1068 (2017).

    Article  CAS  PubMed  Google Scholar 

  60. The Tabula Muris Consortium. et al. A single-cell transcriptomic atlas characterizes ageing tissues in the mouse. Nature 583, 590–595 (2020).

    Article  PubMed Central  Google Scholar 

  61. Angelidis, I. et al. An atlas of the aging lung mapped by single cell transcriptomics and deep tissue proteomics. Nat. Commun. 10, 963 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  62. Heckenbach, I. et al. Nuclear morphology is a deep learning biomarker of cellular senescence. Nat. Aging 2, 742–755 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Hall, B. M. et al. p16(Ink4a) and senescence-associated β-galactosidase can be induced in macrophages as part of a reversible response to physiological stimuli. Aging 9, 1867–1884 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Purnama, C. et al. Transient ablation of alveolar macrophages leads to massive pathology of influenza infection without affecting cellular adaptive immunity: Immunity to infection. Eur. J. Immunol. 44, 2003–2012 (2014).

    Article  CAS  PubMed  Google Scholar 

  65. Schneider, C. et al. Alveolar macrophages are essential for protection from respiratory failure and associated morbidity following influenza virus infection. PLoS Pathog. 10, e1004053 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  66. Alonso, R. et al. Induction of anergic or regulatory tumor-specific CD4+ T cells in the tumor-draining lymph node. Nat. Commun. 9, 2113 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  67. Swift, J. et al. Nuclear lamin-A scales with tissue stiffness and enhances matrix-directed differentiation. Science 341, 1240104 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  68. Maciejowski, J., Li, Y., Bosco, N., Campbell, P. J. & de Lange, T. Chromothripsis and kataegis induced by telomere crisis. Cell 163, 1641–1654 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Gruenbaum, Y. & Foisner, R. Lamins: nuclear intermediate filament proteins with fundamental functions in nuclear mechanics and genome regulation. Annu. Rev. Biochem. 84, 131–164 (2015).

    Article  CAS  PubMed  Google Scholar 

  70. Ivanov, A. et al. Lysosome-mediated processing of chromatin in senescence. J. Cell Biol. 202, 129–143 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Braidy, N. et al. Age related changes in NAD+ metabolism oxidative stress and Sirt1 activity in Wistar rats. PLoS ONE 6, e19194 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Lee, S. et al. Molecular programs of fibrotic change in aging human lung. Nat. Commun. 12, 6309 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Jaitin, D. A. et al. Lipid-associated macrophages control metabolic homeostasis in a Trem2-dependent manner. Cell 178, 686–698 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Fabre, T. et al. Identification of a broadly fibrogenic macrophage subset induced by type 3 inflammation. Sci. Immunol. 8, eadd8945 (2023).

    Article  CAS  PubMed  Google Scholar 

  75. Keren-Shaul, H. et al. A unique microglia type associated with restricting development of Alzheimer’s disease. Cell 169, 1276–1290 (2017).

    Article  CAS  PubMed  Google Scholar 

  76. McQuattie-Pimentel, A. C. et al. The lung microenvironment shapes a dysfunctional response of alveolar macrophages in aging. J. Clin. Invest. 131, 140299 (2021).

    Article  PubMed  Google Scholar 

  77. Sicard, D. et al. Aging and anatomical variations in lung tissue stiffness. Am. J. Physiol. Lung Cell. Mol. Physiol. 314, L946–L955 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Szymczak, K. et al. Expression levels of lamin A or C are critical to nuclear maturation, functional responses, and gene expression profiles in differentiating mouse neutrophils. Immunohorizons 6, 16–35 (2022).

    Article  CAS  PubMed  Google Scholar 

  79. Blagosklonny, M. V., Campisi, J. & Sinclair, D. A. Aging: past, present and future. Aging 1, 1–5 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  80. Casanova-Acebes, M. et al. Tissue-resident macrophages provide a pro-tumorigenic niche to early NSCLC cells. Nature 595, 578–584 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Haston, S. et al. Clearance of senescent macrophages ameliorates tumorigenesis in KRAS-driven lung cancer. Cancer Cell 41, 1242–1260 (2023).

    Article  CAS  PubMed  Google Scholar 

  82. Prieto, L. I. et al. Senescent alveolar macrophages promote early-stage lung tumorigenesis. Cancer Cell 41, 1261–1275 (2023).

    Article  CAS  PubMed  Google Scholar 

  83. Worman, H. J. & Bonne, G. ‘Laminopathies’: a wide spectrum of human diseases. Exp. Cell. Res. 313, 2121–2133 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Clausen, B. E., Burkhardt, C., Reith, W., Renkawitz, R. & Förster, I. Conditional gene targeting in macrophages and granulocytes using LysMcre mice. Transgenic Res. 8, 265–277 (1999).

    Article  CAS  PubMed  Google Scholar 

  85. Jonkers, J. et al. Synergistic tumor suppressor activity of BRCA2 and p53 in a conditional mouse model for breast cancer. Nat. Genet. 29, 418–425 (2001).

    Article  CAS  PubMed  Google Scholar 

  86. Schröder, J. et al. Deficiency of the tetraspanin CD63 associated with kidney pathology but normal lysosomal function. Mol. Cell. Biol. 29, 1083–1094 (2009).

    Article  PubMed  Google Scholar 

  87. Cleary, S. J. et al. Complement activation on endothelium initiates antibody-mediated acute lung injury. J. Clin. Invest. 130, 5909–5923 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Gilhodes, J. -C. et al. Quantification of pulmonary fibrosis in a bleomycin mouse model using automated histological image analysis. PLoS ONE 12, e0170561 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  89. Michaudel, C., Fauconnier, L., Julé, Y. & Ryffel, B. Functional and morphological differences of the lung upon acute and chronic ozone exposure in mice. Sci. Rep. 8, 10611 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  90. Watson, J. K. et al. Distal lung epithelial progenitor cell function declines with age. Sci. Rep. 10, 10490 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Zheng, G. X. Y. et al. Massively parallel digital transcriptional profiling of single cells. Nat. Commun. 8, 14049 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Satija, R., Farrell, J. A., Gennert, D., Schier, A. F. & Regev, A. Spatial reconstruction of single-cell gene expression data. Nat. Biotechnol. 33, 495–502 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Finak, G. et al. MAST: a flexible statistical framework for assessing transcriptional changes and characterizing heterogeneity in single-cell RNA sequencing data. Genome Biol. 16, 278 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  94. Clarke, D. J. B. et al. eXpression2Kinases (X2K) Web: linking expression signatures to upstream cell signaling networks. Nucleic Acids Res. 46, W171–W179 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Kwon, A. T., Arenillas, D. J., Hunt, R. W. & Wasserman, W. W. oPOSSUM-3: advanced analysis of regulatory motif over-representation across genes or ChIP-seq datasets. G3 2, 987–1002 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Smyth, G. Limma: linear models for microarray data. In Bioinformatics and Computational Biology Solutions Using R and Bioconductor (eds. R. Gentleman et al.) 397–420 (Springer, 2005).

  97. Yu, G., Wang, L. -G., Han, Y. & He, Q. -Y. clusterProfiler: an R package for comparing biological themes among gene clusters. OMICS 16, 284–287 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Subramanian, A. et al. Gene-set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc. Natl Acad. Sci. USA 102, 15545–15550 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank G. Bonne, B. Ryffel, X. Lahaye, O. Lantz, A. Darbois Delahousse, J. Helft, H. Salmon, L. Perie, A. -M. Lennon, A. Yatim, I. Simeonova and G. Almouzni for discussions and technical help, TMS consortium for early access to data and the Institut Curie Institut Curie flow cytometry, next-generation sequencing and animal facilities. This work was supported by Institut Curie, INSERM, CNRS, Agence Nationale de la Recherche grant LUSTRA (to A.L.), Agence Nationale de la Recherche grants ANR-17-CE15-0025-01, ANR-19-CE15-0018-01, ANR-18-CE92-0022-01, 11-LABX-0043 (to N.M.), ANR-19-CE14-0015 (to A.L.-V. and C.F.), Institut National du Cancer grant 2019-1-PL BIO-07-ICR-1 (to N.M. and M.P.), Institut Thématique Multi-Organisme Cancer grant 19CS007-00 (to N.M. and M.P.), Fondation Chercher et Trouver (to N.M.), Mutuelle Bleue (to N.M.), Fondation ARC pour la recherche sur le cancer grants ARCAGEING2022050004956 (to N.M.), PGA1 RF20190208474 (to G.v.N.), Fondation pour la Recherche Médicale grant EQU202103012774 (to N.M.), EDF grants ORG20190038 and CT9818 (to A.L.-V), Instituto de Salud Carlos III grant PI20/00306, Fondo Europeo de Desarrollo Regional « A way to build Europe » (J.M.G.-G.), Deutsche Forschungsgemeinschaft 369799452-TRR237 B19 (to R.B.), EMBO ALTF grant 1298-2016 (to N.S.D.S.), European Commission Horizon 2020 grant H2020-MSCA-IF-2016 DCBIO (to N.S.D.S.), Région Ile-de-France DIM Longévité et Vieillissement (to N.S.D.S.) and MCNU FPU program grant FPU18/00895 (to B.H.F.).

Author information

Authors and Affiliations

Authors

Contributions

N.S.D.S., J.S., C.A., G.N., F.N., K.A., M.C., H.I., A. Bhargava, C.C., M.M., K.A., C.F., A.L.-V., R.B., K.B., C.S., F.L., L.G., P.S., B.H., A.S., J.G., G.v.N., A. Boissonnas, M.P. and N.M. carried out experimental design and studies, analyzed data and/or contributed to the manuscript. All authors discussed the results and commented on the manuscript.

Corresponding author

Correspondence to Nicolas Manel.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Aging thanks the anonymous reviewers for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data

Extended Data Fig. 1 Analysis of immune cells in Lamin A/C CKO mice.

(A) Flow cytometric analysis of WT vs Lamin A/C CKO macrophage and dendritic cell (DC) populations in spleen, with gating strategies for each population represented by colored gating. Left, representative example of the gating strategy. Right, percentage of each population of live spleen cells and absolute counts (n = 4 mice, combined from 2 independent experiments, bar indicates mean ± SD, one-way ANOVA with Šidák test). (B) Flow cytometric analysis of WT vs Lamin A/C CKO Natural killer, T and B cell populations in spleen and lymph nodes, with gating strategies for each population represented by colored gating. Top, representative example of the gating strategy. Bottom, percentage of each population of live spleen or lymph node cells and absolute counts (spleen, n = 6 WT and 5 Lamin A/C CKO mice for NK and T cells analysis, 4 WT and 4 Lamin A/C CKO mice for DCs, macrophages and B cells; lymph nodes: n = 8 WT and 6 Lamin A/C CKO mice for NK and T cells analysis, 6 WT and 5 Lamin A/C CKO mice for B cells combined from 4 independent experiments, bar indicates mean ± SD, one-way ANOVA with Šidák test). (C) Flow cytometric analysis of WT vs Lamin A/C CKO to analyze hematopoietic stem cell (HSC) and plasmacytoid dendritic cell populations in bone marrow, with gating strategies for each population represented by colored gating. Top, representative example of the gating strategy. Bottom, percentage of each population of live bone marrow cells and the absolute counts (n = 4 WT and 4 Lamin A/C CKO mice for pDC analysis, n = 6 WT and 6 Lamin A/C CKO mice for all the other populations, combined from 3 independent experiments, bar indicates mean ± SD, one-way ANOVA with Šidák test). Acronyms used: Short term HSC (ST-HSC), Multipotent hematopoietic progenitor (MPP), common myeloid progenitor (CMP), common lymphoid progenitor (CLP), granulocyte macrophage progenitor (GMP), megakaryocyte-erythroid progenitor (MEP), plasmacytoid dendritic cell (pDC).

Source data

Extended Data Fig. 2 Analysis of immune cells in lungs of Lamin A/C CKO mice.

(A) Representative flow cytometric analysis of WT vs Lamin A/C CKO lung immune populations including AM, eosinophils, interstitial macrophages, CD103+ DC and CD11b+ DC with gating strategies for each population represented by colored gating. (B) Percentages and absolute counts of AM, eosinophils, interstitial macrophages, CD103 + DC and CD11b+ DC of live WT vs Lamin A/C CKO lung cells (n = 17 WT and 14 Lamin A/C CKO mice, combined from 9 independent experiments, bar indicates mean ± SD, one-way ANOVA with Šidák test). (C) Percentage of AM (CD45.2+SSChiMHCintSiglecF+) following flow cytometric analysis of WT (Lmnafl/fl LysM-Cre-/-) vs Lmnafl/fl LysM-Cre+/- lung (n = 4 mice combined from 2 independent experiments, bar indicates mean ± SD, two-tailed unpaired t test).

Source data

Extended Data Fig. 3 scRNAseq analysis of lung immune cells in WT and Lamin A/C CKO mice.

(A) Heatmap showing the expression of cluster-specific gene markers. Differential expression analysis is done for each cluster against all the other cells (including the contaminants). Among the top 50 significant DEGs, the 10 DEGs with the top fold change are shown. Common DEGs between clusters are reported only once. Entries are the z-scores of the normalized expression level, clipped to fit the interval. (B) tSNE representation showing WT (left) and Lamin A/C CKO (right) cells only, and colored by replicate. In WT, replicate 1 contains 4075 cells and replicate 2 contains 3980. In Lamin A/C CKO, replicate 1 contains 4000 cells and replicate 2 contains 3677. (C) tSNE representation showing WT cells (top) and Lamin A/C CKO cells (bottom). Cells are colored with a gradient representing the normalized expression level of immune and alveolar macrophage markers.

Extended Data Fig. 4 DNA damage and related markers in alveolar macrophages of Lamin A/C CKO mice.

(A) Gene ontology enrichment analysis of DEGs upregulated in Lamin A/C CKO, specific to the AM cluster. Top 10 terms (p-values computed with clusterProfiler) from the biological process (BP) ontology are shown, and the DNA-damage-related pathway is highlighted (red). (B) Violin plot showing the normalized expression of Cdkn1a in the AM cluster, with values for individual WT and Lamin A/C CKO replicates shown (p-value computed with MAST with Bonferroni correction). (C) Expression of cGAS and Vinculin in BAL cells from mice of the indicated genotypes (n = 2 Lmnafl/fl CgasKO/KOVav1-Cre+/-, n = 1 Lmnafl/fl CgasKO/KOVav1-Cre-/-, n = 2 Lmnafl/fl p53fl/flVav1-Cre-/- and n = 2 Lmnafl/fl p53fl/flVav1-Cre+/- from one experiment). (D) Detection of Tp53 floxed (flox) and deletion (del) alleles by PCR in BAL cells from mice of the indicated genotypes (n = 2 WT (Lmnafl/fl p53fl/flVav1-Cre-/-) vs Lamin A/C p53 DKO (Lmnafl/fl p53fl/flVav1-Cre+/-) from one experiment). (E) Representative intracellular flow cytometric analysis of mice from WT (Lmnafl/fl Vav1-Cre-/-) vs Lamin A/C CKO (Lmnafl/fl Vav1-Cre+/-) and WT (Lmnafl/fl p53fl/flVav1-Cre-/-) vs Lamin A/C p53 DKO (Lmnafl/fl p53fl/flVav1-Cre+/-) to identify AM (CD45.2+SSChiMHCintSiglecF+) and assess gH2AX (fill) and isotype control (open) levels. (F) Representative flow cytometry analysis and quantification of Caspase 3/7 activity in live (SYTOX) and dead (SYTOX+) cells in the indicated populations (n = 4 mice combined from 2 experiments, bar indicates mean ± SD, Kruskal-Wallis H-test with Dunn’s correction). In the SYTOX channel, based on the control condition omitting the SYTOX reagent, Caspase 3/7-negative AM are SYTOX but show higher auto-fluorescence than other cells.

Source data

Extended Data Fig. 5 Live imaging of alveolar macrophages in lungs.

(A) AM from WT mouse lung (female) undergoing constricted migration in vivo. Top left, XY and XZ planes. Bottom left, contour representation. Right, measurement of the cell width at the most acute point of squeezing. (B) BAL from Lamin A/C CKO mice confined at a height of 2 µm for 1.5 hours and subsequently stained for DAPI, BAF and SiglecF (representative of n = 4 independent experiments, each time BAL was pooled from 2 mice aged 8-26 weeks). (C) BAL from WT and Lamin A/C CKO mice confined at 2 µm and 10 µm for 1.5 hours and subsequently stained for DAPI, Lamin A/C and SiglecF. Left, representative field. Right, quantification of mean intensity of the Lamin A/C intensity (violin plot with lines indicating the median and quartile values, representative of 2 independent experiments, 6-7 images fields per group were used, one-way ANOVA with Tukey test, each time BAL was pooled from 2 mice of each genotype). (D) Staining for Lamin A/C, SiglecF, γH2AX and DAPI in BAL form Lamin A/C CKO mice after confinement at 2 µm (scale bar 10 µm).

Source data

Extended Data Fig. 6 Analysis of markers in Lamin A/C CKO mice.

(A) Left, intracellular flow cytometric analysis of WT vs Lamin A/C CKO lung for CD88. levels within AM (CD45.2+SSChiMHCintSiglecF+). Right, mean fluorescence intensity (MFI) of CD88 signal normalized to isotype control (n = 5 WT and 8 Lamin A/C CKO mice, combined from 3 independent experiments, mice aged 28-39 weeks, bar indicates mean ± SD, two-tailed unpaired t test). (B) Cathepsin L activity in BAL extracted from WT vs Lamin A/C CKO mice (n = 10 WT and 11 Lamin A/C CKO mice from 8 independent experiments, bar indicates mean ± SD, aged 13-34 weeks, two-tailed unpaired t-test). (C) Flow cytometric analysis of BAL obtained from WT vs Lamin A/C CKO mice to analyze neutrophils, T and B cells with gating strategies for each population represented by colored gating. Left, representative example. Right, percentage of each population of live BAL cells and absolute counts of each population in extracted BAL (n = 8 WT and 7 Lamin A/C CKO mice, combined from 4 independent experiments, mice aged 24-34 weeks, bars indicate mean ± SD, one-way ANOVA with Šidák test). (D) Protein concentration in the BAL of WT and Lamin A/C CKO mice (n = 9 mice, bars indicate mean ± SD, two-tailed unpaired t-test). (E) Quantification of alveolar density, collagen content and fibrotic foci in lung sections of WT and Lamin A/C CKO mice. Top, representative images of staining and corresponding automated mapping. Bottom, quantification (n = 4 WT and 5 CKO mice, 4-10 images fields per group were used, bars indicate mean ± SD, two-tailed unpaired t-test).

Source data

Extended Data Fig. 7 scRNAseq of irradiated mice and CD63 expression in knock-out mice.

(A) Heatmap showing single cell gene expression (z-score) of DEGs in AM 5 months post-17Gy irradiation and non-irradiated controls. Cells are grouped by condition. DEGs are divided among up- and down-regulated in case vs control, clustered with a ward.D2 method computed on euclidean distances and shown as dendrogram. DEGs are annotated with log2 fold change (FC) values. (B) Number of AMs and analysis of intracellular levels of CD63 and γH2AX in p53fl/fl Vav1-Cre+/– and p53fl/fl Vav1-Cre–/– mice, normalized median fluorescent intensity (MFI) (n = 3 mice combined from 2 experiments, bars indicate mean ± SD, two-tailed Welch t-test). (C) Number of AMs and analysis of intracellular levels of CD63 and γH2AX in Lmnafl/fl Vav1-Cre–/– (WT), LmnaWT/WT Vav1-Cre+/– and Lmnafl/fl Vav1-Cre+/– (Lamin A/C CKO) mice, normalized median fluorescent intensity (MFI) (n = 5 mice combined from 3 experiments, bars indicate mean ± SD, one-way ANOVA with Sidak test). (D) CD63 and γH2AX in fresh AMs and AM maintained in vitro for 5 and 20 hours. Open line, isotype; filled line, specific antibody. (E) Immunofluorescence analysis of CD63 (red) and BAF (green) or CD63 (red) and dsDNA (green) in WT (right panels) and Lamin A/C CKO (left panels) BAL cells following confinement at 2 μm for 1.5 hours (z-projection, max intensity; images representative of n = 4 mice from 2 independent experiments). Bar, 5 μm. (F) Intracellular flow cytometric analysis for CD63 levels within AM (CD45.2+SSChiMHCintSiglecF+) of WT vs CD63 KO lung single cell suspension, treated as indicated. MFI of CD63 normalized to isotype control (n = 3 mice in one experiment, mice were 19 weeks of age, bars indicate mean ± SD, one-way ANOVA with Šidák test).

Source data

Extended Data Fig. 8 Hallmarks of aging in alveolar macrophages.

(A) Percentage AM (CD45.2+SSChiMHCintSiglecF+) of live lung cells in Young (14 weeks) vs Old (63 weeks) mice (n = 4 mice combined from 2 independent experiments, bars indicate mean ± SD, unpaired t test). (B) Normalized enrichment scores (NES) and adjusted p-values (statistical test from GSEA) following gene set enrichment analysis of the indicated upregulated or downregulated genes. Left, TMS gene sets enrichment in Lamin A/C CKO vs WT transcriptome. Geneset obtained after individual pairwise time-point comparisons and overall aging signature were tested. Right, Lamin A/C CKO gene sets enrichment in TMS transcriptome, ranked by the indicated time-point comparisons. n genes in sets indicates the number of genes in given gene set detected in the tested transcriptome. (C) Young (14 weeks) vs Old (63 weeks) lung single cell suspension was directly analyzed or incubated with DMSO or 50 mM etoposide for 1 hour. Intracellular flow cytometric analysis for gH2AX levels within AM (CD45.2+SSChiMHCintSiglecF+) was then performed. The geoMFI of gH2AX signal is shown normalized to isotype control (n = 4 mice from 2 independent experiments, bars indicate mean ± SD, one-way ANOVA with Šidák test). (D) Beta-galactosidase staining in RPE-1 cells, control, or after confinement at 2 µM that induces senescence as shown previously18, and WT and Lamin A/C CKO cells from BAL (scale bar 90 µm).

Source data

Extended Data Fig. 9 Influenza infections in Lamin A/C CKO mice.

(A) Percentage of day 0 weight observed each day post infection with 50 pfu influenza A virus via the intranasal route in WT and Lamin A/C CKO mice. Top, individual curves, bottom, bar plot (n = female 12 mice per genotype, combined from 2 independent experiments, two-way ANOVA with Tukey test, bars indicate mean ± SD). (B) Survival of WT vs Lamin A/C CKO mice following infected with 100 pfu of influenza A virus PR8 via the intranasal route (n = 6 mice per genotype in one experiment, Log-rank Mantel-Cox test). (C) Percentage of day 0 weight observed each day post infection described in (B). Curves of average ± SEM weights are shown and continued until a first death occurs in the group. (D) Percentage of day 0 weight observed each day post infection described in (B) (two-way ANOVA with Tukey test, bars indicate mean ± SD). (E) Percentage of day 0 weight in Lmnafl/fl LysM-cre+/- and Lmnafl/fl LysM-cre-/- mice in 4 weeks and 8 weeks mice, each post infection with 35 pfu influenza virus via the intranasal route. Top, individual curves, bottom, bar plots (n = 7 WT and 8 Lamin A/C CKO mice 4 weeks old and 8 WT and 9 Lamin A/C CKO mice 8 weeks old in one experiment per age group, two-way ANOVA with Sidak test, bars indicate mean + SD).

Source data

Supplementary information

Reporting Summary

Supplementary Table 1

DEGs for cluster assignment. P values were computed with MAST with Bonferroni correction.

Supplementary Table 2

Expression of Lmna in the Lung Connectome dataset.

Supplementary Table 3

DEGs identified in clusters. P values were computed with MAST with Bonferroni correction.

Supplementary Table 4

DEGs in the alveolar macrophage cluster of irradiated mice. P values were computed with MAST with Bonferroni correction.

Supplementary Table 5

DEGs in the alveolar macrophage cluster of TMS. P values were computed with MAST with Bonferroni correction.

Supplementary Table 6

Sex of mice used in the study.

Supplementary Table 7

Antibodies used in the study.

Supplementary Video 1

Live imaging of a WT mouse lung. The lung was imaged after administration of Hoechst and an anti-SiglecF antibody. Left is a broad field of a lung region, right features individual AMs (SiglecF+) demonstrating constricted migration (white boxes).

Supplementary Video 2

A single AM undergoing constricted migration in vivo. Left, contour representation. Right, XY and XZ planes.

Source data

Source Data Fig. 1

Statistical source data.

Source Data Fig. 2

Statistical source data.

Source Data Fig. 3

Statistical source data.

Source Data Fig. 4

Statistical source data.

Source Data Fig. 5

Statistical source data.

Source Data Fig. 6

Statistical source data.

Source Data Fig. 7

Statistical source data.

Source Data Fig. 8

Statistical source data.

Source Data Extended Data Fig./Table 1

Statistical source data.

Source Data Extended Data Fig./Table 2

Statistical source data.

Source Data Extended Data Fig./Table 4

Statistical source data.

Source Data Extended Data Fig./Table 5

Statistical source data.

Source Data Extended Data Fig./Table 6

Statistical source data.

Source Data Extended Data Fig./Table 7

Statistical source data.

Source Data Extended Data Fig./Table 8

Statistical source data.

Source Data Extended Data Fig./Table 9

Statistical source data.

Source Data Extended Data Fig. 4

Extended Data Fig. 4C uncropped western blots.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

De Silva, N.S., Siewiera, J., Alkhoury, C. et al. Nuclear envelope disruption triggers hallmarks of aging in lung alveolar macrophages. Nat Aging 3, 1251–1268 (2023). https://doi.org/10.1038/s43587-023-00488-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s43587-023-00488-w

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing