Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Technical Review
  • Published:

Graph neural networks at the Large Hadron Collider

Abstract

From raw detector activations to reconstructed particles, data at the Large Hadron Collider (LHC) are sparse, irregular, heterogeneous and highly relational in nature. Graph neural networks (GNNs), a class of algorithms belonging to the rapidly growing field of geometric deep learning (GDL), are well suited to tackling such data because GNNs are equipped with relational inductive biases that explicitly make use of localized information encoded in graphs. Furthermore, graphs offer a flexible and efficient alternative to rectilinear structures when representing sparse or irregular data, and can naturally encode heterogeneous information. For these reasons, GNNs have been applied to a number of LHC physics tasks including reconstructing particles from detector readouts and discriminating physics signals against background processes. We introduce and categorize these applications in a manner accessible to both physicists and non-physicists. Our explicit goal is to bridge the gap between the particle physics and GDL communities. After an accessible description of LHC physics, including theory, measurement, simulation and analysis, we overview applications of GNNs at the LHC. We conclude by highlighting technical challenges and future directions that may inspire further collaboration between the physics and GDL communities.

Key points

  • The LHC will face unprecedented technical challenges in processing and analysing large volumes of data during its high-luminosity (HL-LHC) phase; physicists are exploring various learning algorithms to maintain and improve physics performance at the HL-LHC.

  • Graphs are a flexible and efficient way to represent LHC data, which are sparse, irregular and heterogeneous in nature.

  • GNNs are well suited to making use of the highly relational nature of LHC data through mechanisms such as neural message passing.

  • GNNs have been applied to various LHC physics tasks including reconstruction (clustering), identification (classification), calibration (regression), anomaly detection and simulation (generative modelling).

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Elementary particles and their production and observation at the LHC.
Fig. 2: Detectors and signatures specific to a given particle.
Fig. 3: Graph structure and the message-passing paradigm.
Fig. 4: A particle tracking pipeline based on edge classification.
Fig. 5: Edge representation and object condensation in multilayer calorimetry.
Fig. 6: Jet measurements, types, and representations.
Fig. 7: Event observables and representations.

References

  1. Brüning, O. S. et al. LHC Design Report. CERN Yellow Reports: Monographs (CERN, 2004); https://cds.cern.ch/record/782076. https://doi.org/10.5170/CERN-2004-003-V-1.

  2. LeCun, Y., Bengio, Y. & Hinton, G. Deep learning. Nature 521, 436–444 (2015).

    Article  ADS  Google Scholar 

  3. Cardon, D., Cointet, J.-P. & Mazières, A. Neurons spike back. Réseaux 211, 173–220 (2018).

    Article  Google Scholar 

  4. Guest, D., Cranmer, K. & Whiteson, D. Deep learning and its application to LHC physics. Annu. Rev. Nucl. Part. Sci. 68, 161–181 (2018).

    Article  ADS  Google Scholar 

  5. Duarte, J. et al. Fast inference of deep neural networks in FPGAs for particle physics. J. Instrum. 13, P07027 (2018).

    Article  Google Scholar 

  6. Shlomi, J., Battaglia, P. & Vlimant, J.-R. Graph neural networks in particle physics. Mach. Learn. Sci. Technol. 2, 021001 (2021).

    Article  Google Scholar 

  7. Thais, S. et al. Graph neural networks in particle physics: implementations, innovations, and challenges. Preprint at https://arxiv.org/abs/2203.12852 (2022).

  8. Glashow, S. Partial-symmetries of weak interactions. Nucl. Phys. 22, 579–588 (1961).

    Article  Google Scholar 

  9. Weinberg, S. A model of leptons. Phys. Rev. Lett. 19, 1264–1266 (1967).

    Article  ADS  Google Scholar 

  10. Salam, A. Elementary particle physics: relativistic groups and analyticity. In Eighth Nobel Symposium (ed. Svartholm, N.) 367 (Almquist and Wiksell, 1968).

  11. Workman, R. L.et al. Review of Particle Physics PTEP 2022, 083C01 (2022). The Review of Particle Physics is a complete reference work published every two years. In addition to summary of all known particle properties, it contains an invaluable collection of reviews on a diverse set of topics related to particle physics. An online version is available at https://pdg.lbl.gov/, the official DOI article link being https://doi.org/10.1093/ptep/ptac097.

  12. ATLAS Collaboration. Observation of a new particle in the search for the standard model Higgs boson with the ATLAS detector at the LHC. Phys. Lett. B 716, 1–29 (2012).

    Article  ADS  Google Scholar 

  13. CMS Collaboration. Observation of a new boson at a mass of 125 GeV with the CMS experiment at the LHC. Phys. Lett. B 716, 30–61 (2012).

    Article  ADS  Google Scholar 

  14. Englert, F. Nobel lecture: the BEH mechanism and its scalar boson. Rev. Mod. Phys. 86, 843–850 (2014).

    Article  MATH  ADS  Google Scholar 

  15. Higgs, P. W. Nobel lecture: evading the Goldstone theorem. Rev. Mod. Phys. 86, 851–853 (2014).

    Article  ADS  Google Scholar 

  16. Young, B.-L. A survey of dark matter and related topics in cosmology. Front. Phys. 12, 121201 (2016).

    Article  ADS  Google Scholar 

  17. Canetti, L., Drewes, M. & Shaposhnikov, M. Matter and antimatter in the Universe. New J. Phys. 14, 095012 (2012).

    Article  MATH  ADS  Google Scholar 

  18. Bass, S. D., De Roeck, A. & Kado, M. The Higgs boson implications and prospects for future discoveries. Nat. Rev. Phys. 3, 608–624 (2021).

    Article  Google Scholar 

  19. ATLAS Collaboration. The ATLAS experiment at the CERN Large Hadron Collider. J. Instrum. 3, S08003 (2008).

    Google Scholar 

  20. CMS Collaboration. The CMS experiment at the CERN LHC. J. Instrum. 3, S08004 (2008).

    Google Scholar 

  21. The LHCb Collaboration. The LHCb detector at the LHC. J. Instrum. 3, S08005 (2008).

    Google Scholar 

  22. The ALICE Collaboration. The ALICE experiment at the CERN LHC. J. Instrum. 3, S08002 (NeurIPS, 2008).

    Google Scholar 

  23. ATLAS collaboration. Operation of the ATLAS trigger system in Run 2. J. Instrum. 15, P10004 (NeurIPS, 2020).

    Article  Google Scholar 

  24. Pallabi Das and on behalf of the CMS Collaboration. An overview of the trigger system at the CMS experiment. Phys. Scr. 97, 054008 (2022).

    Article  ADS  Google Scholar 

  25. Beaudette, F. The CMS particle flow algorithm. In Proc. CHEF2013 Conference (eds Brient, J. C. et al.) 295 (LLR, 2013); preprint available at https://arxiv.org/abs/1401.8155.

  26. CMS Collaboration. Particle-flow reconstruction and global event description with the CMS detector. J. Instrum. 12, P10003 (2017).

    Article  Google Scholar 

  27. ATLAS Collaboration. Jet reconstruction and performance using particle flow with the ATLAS Detector. Eur. Phys. J. C https://doi.org/10.1140/epjc/s10052-017-5031-2 (2017).

    Article  Google Scholar 

  28. Apollinari, G. et al. High-Luminosity Large Hadron Collider (HL-LHC): Technical Design Report V.0.1. CERN Yellow Reports: Monographs (CERN, 2017); https://cds.cern.ch/record/2284929.

  29. Albrecht, J. et al. A roadmap for HEP software and computing R&D for the 2020s. Comput. Softw. Big Sci. 3, 7 (2019).

    Article  Google Scholar 

  30. 2020 Update of the European Strategy for Particle Physics (Brochure) (European Strategy Group, 2020); https://doi.org/10.17181/CERN.JSC6.W89E.

  31. McCallum, A. K., Nigam, K., Rennie, J. & Seymore, K. Automating the construction of internet portals with machine learning. Inf. Retr. 3, 127–163 (2000).

    Article  Google Scholar 

  32. Giles, C. L., Bollacker, K. D. & Lawrence, S. CiteSeer: an automatic citation indexing system. In Proc. 3rd ACM Conference on Digital Libraries DL ’98, 89–98 (ACM, 1998); https://doi.org/10.1145/276675.276685.

  33. Sen, P. et al. Collective classification in network data. AI Mag. 29, 93 (2008).

    Google Scholar 

  34. Yi, L. et al. A scalable active framework for region annotation in 3D shape collections. ACM Trans. Graph. https://doi.org/10.1145/2980179.2980238 (2016).

  35. Wu, Z. et al. 3D ShapeNets: a deep representation for volumetric shapes. Preprint at https://doi.org/10.48550/arXiv.1406.5670 (2014).

  36. Gómez-Bombarelli, R. et al. Automatic chemical design using a data-driven continuous representation of molecules. ACS Cent. Sci. 4, 268–276 (2018).

    Article  Google Scholar 

  37. Wu, Z. et al. MoleculeNet: a benchmark for molecular machine learning. Preprint at https://doi.org/10.48550/arXiv.1703.00564 (2017).

  38. Hamilton, W. L. Graph Representation Learning. Synthesis Lectures on Artificial Intelligence and Machine Learning (Morgan & Claypool, 2020).

  39. Bronstein, M. M., Bruna, J., Cohen, T. & Veličković, P. Geometric deep learning: grids, groups, graphs, geodesics, and gauges. Preprint at https://arxiv.org/abs/2104.13478 (2021).

  40. Battaglia, P. W., Pascanu, R., Lai, M., Rezende, D. & Kavukcuoglu, K. Interaction Networks for Learning about Objects, Relations and Physics. Preprint at https://arxiv.org/abs/1612.00222 (2016).

  41. Biscarat, C., Caillou, S., Rougier, C., Stark, J. & Zahreddine, J. Towards a realistic track reconstruction algorithm based on graph neural networks for the HL-LHC. EPJ Web Conf. 251, 03047 (2021).

    Article  Google Scholar 

  42. Henrion, I. et al. Neural message passing for jet physics. Deep Learning for Physical Sciences Workshop, 31st Conference on Neural Information Processing Systems (NIPS) https://dl4physicalsciences.github.io/files/nips_dlps_2017_29.pdf (2017).

  43. Pata, J., Duarte, J., Vlimant, J.-R., Pierini, M. & Spiropulu, M. MLPF: efficient machine-learned particle-flow reconstruction using graph neural networks. Eur. Phys. J. C 81, 381 (2021).

    Article  ADS  Google Scholar 

  44. Fix, E. & Hodges, J. L. Discriminatory analysis. Nonparametric discrimination: consistency properties. Int. Stat. Rev. 57, 238–247 (1989).

    Article  MATH  Google Scholar 

  45. Altman, N. S. An Introduction to kernel and nearest-neighbor nonparametric regression. Am. Stat. 46, 175–185 (1992).

    MathSciNet  Google Scholar 

  46. Ester, M., Kriegel, H.-P., Sander, J. & Xu, X. A density-based algorithm for discovering clusters in large spatial databases with noise. In Proc. 2nd International Conference on Knowledge Discovery and Data Mining, KDD’96, 226–231 (AAAI, 1996); https://www.aaai.org/Papers/KDD/1996/KDD96-037.pdf.

  47. DeZoort, G. et al. Charged particle tracking via edge-classifying interaction networks. Comput. Softw. Big Sci. 5, 26 (2021).

    Article  ADS  Google Scholar 

  48. Sahay, R. & Thais, S. Graph segmentation in scientific datasets. In Machine Learning and the Physical Sciences Workshop at the 35th Conference on Neural Information Processing Systems(Sydney, 2021); https://ml4physicalsciences.github.io/2021/files/NeurIPS_ML4PS_2021_144.pdf.

  49. Elabd, A. et al. Graph neural networks for charged particle tracking on FPGAs. Front. Big Data 5, 828666 (2022).

    Article  Google Scholar 

  50. Fey, M. & Lenssen, J. E. Fast graph representation learning with PyTorch geometric. Preprint at https://arxiv.org/abs/1903.02428 (2019).

  51. Zaheer, M. et al. Deep Sets. Preprint at https://doi.org/10.48550/arXiv.1703.06114 (2017).

  52. Veličković, P. Theoretical foundations of graph neural networks. CST Wednesday Seminar, https://petar-v.com/talks/GNN-Wednesday.pdf (2021).

  53. Gilmer, J., Schoenholz, S. S., Riley, P. F., Vinyals, O. & Dahl, G. E. Neural message passing for quantum chemistry. Preprint at https://doi.org/10.48550/arXiv.1704.01212 (2017).

  54. Li, Q., Han, Z. & Wu, X. Deeper insights into graph convolutional networks for semi-supervised learning. Preprint at https://doi.org/10.48550/arXiv.1801.07606 (2018).

  55. Belavin, V., Trofimova, E. & Ustyuzhanin, A. Segmentation of EM showers for neutrino experiments with deep graph neural networks. J. Instrum. 16, P12035 (2021).

    Article  Google Scholar 

  56. Hamilton, W. L., Ying, R. & Leskovec, J. Inductive representation learning on large graphs. NIPS 2017, https://doi.org/10.48550/arXiv.1706.02216 (2018).

  57. Cangea, C., Veličković, P., Jovanović, N., Kipf, T. & Liò, P. Towards sparse hierarchical graph classifiers. Preprint at https://doi.org/10.48550/arXiv.1811.01287 (2018).

  58. Kipf, T. N. & Welling, M. Semi-supervised classification with graph convolutional networks. Preprint at https://doi.org/10.48550/arXiv.1609.02907 (2016).

  59. Wang, Y. et al. Dynamic graph CNN for learning on point clouds. Preprint at https://doi.org/10.48550/arXiv.1801.07829 (2019).

  60. Veličković, P. et al. Graph attention networks. Preprint at https://doi.org/10.48550/arXiv.1710.10903 (2018).

  61. Qasim, S. R., Kieseler, J., Iiyama, Y. & Pierini, M. Learning representations of irregular particle-detector geometry with distance-weighted graph networks. Eur. Phys. J. C 79, 608 (2019).

    Article  ADS  Google Scholar 

  62. Iiyama, Y. et al. Distance-weighted graph neural networks on FPGAs for real-time particle reconstruction in high energy physics. Front. Big Data 3, 598927 (2021).

    Article  Google Scholar 

  63. Kieseler, J. Object condensation: one-stage grid-free multi-object reconstruction in physics detectors, graph, and image data. Eur. Phys. J. C 80, 886 (2020).

    Article  ADS  Google Scholar 

  64. Komiske, P. T., Metodiev, E. M. & Thaler, J. Energy flow networks: deep sets for particle jets. J. High Energy Phys. https://doi.org/10.1007/JHEP01(2019)121 (2019).

  65. Dolan, M. J. & Ore, A. Equivariant energy flow networks for jet tagging. Phys. Rev. D 103, 074022 (2021).

    Article  ADS  Google Scholar 

  66. Serviansky, H. et al. Set2Graph: learning graphs from sets. Preprint at https://doi.org/10.48550/arXiv.2002.08772 (2020).

  67. Frühwirth, R. & Strandlie, A. Pattern Recognition, Tracking and Vertex Reconstruction in Particle Detectors (Springer, 2021).

  68. Amrouche, S. et al. The tracking machine learning challenge: accuracy phase. In The NeurIPS ’18 Competition (eds Escalera, S. & Herbrich, R.) 231–264 (Springer, 2020).

  69. Amrouche, S. et al. The Tracking Machine Learning challenge: throughput phase. Preprint at https://doi.org/10.48550/arXiv.2105.01160 (2021).

  70. CERN. TrackML particle tracking challenge. https://www.kaggle.com/c/trackml-particle-identification/overview.

  71. CERN. TrackML throughput phase. https://competitions.codalab.org/competitions/20112.

  72. Farrell, S. et al. Novel deep learning methods for track reconstruction. Preprint at https://doi.org/10.48550/arXiv.1810.06111 (2018).

  73. Ju, X. et al. Graph neural networks for particle reconstruction in high energy physics detectors. Preprint at https://doi.org/10.48550/arXiv.2003.11603 (2020).

  74. Duarte, J. & Vlimant, J.-R. Graph Neural Networks for Particle Tracking and Reconstruction, 387–436 (World Scientific, 2022).

  75. Choma, N. et al. Track seeding and labelling with embedded-space graph neural networks. Preprint at https://doi.org/10.48550/arXiv.2007.00149 (2020).

  76. Ju, X. et al. Performance of a geometric deep learning pipeline for HL-LHC particle tracking. Eur. Phys. J. C 81, 876 (2021).

    Article  ADS  Google Scholar 

  77. Galil, Z. & Italiano, G. F. Data structures and algorithms for disjoint set union problems. ACM Comput. Surv. 23, 319–344 (1991).

    Article  Google Scholar 

  78. Heintz, A. et al. Accelerated charged particle tracking with graph neural networks on FPGAs. Preprint at https://doi.org/10.48550/arXiv.2012.01563 (2020).

  79. Tüysüz, C. et al. Hybrid quantum classical graph neural networks for particle track reconstruction. Quantum Mach. Intell. 3, 29 (2021).

    Article  Google Scholar 

  80. ATLAS Collaboration. Technical Design Report for the Phase-II Upgrade of the ATLAS Trigger and Data Acquisition System — Event Filter Tracking Amendment (CERN, 2022); https://cds.cern.ch/record/2802799.

  81. Thais, S. & DeZoort, G. Instance segmentation GNNs for one-shot conformal tracking at the LHC. In Third Workshop on Machine Learning and the Physical Sciences (2020); https://doi.org/10.48550/arXiv.2103.06509.

  82. Shi, W., Ragunathan & Rajkumar. Point-GNN: graph neural network for 3D object detection in a point cloud. Preprint at https://arxiv.org/abs/2003.01251 (2020).

  83. Albertsson, K. & Meloni, F. Displaced event classification using graph networks. In Connecting the Dots Workshop 2020 (CTD2020) (Zenodo, 2020); https://doi.org/10.5281/zenodo.4088500.

  84. Iiyama, Y. et al. Application of distance-weighted graph neural networks to real-life particle detector output. In Second Workshop on Machine Learning and the Physical Sciences (Vancouver, 2019); https://ml4physicalsciences.github.io/2019/files/NeurIPS_ML4PS_2019_68.pdf.

  85. Qasim, S. R., Long, K., Kieseler, J., Pierini, M. & Nawaz, R. Multi-particle reconstruction in the High Granularity Calorimeter using object condensation and graph neural networks. Preprint at https://doi.org/10.48550/arXiv.2106.01832 (2021).

  86. Qasim, S. R. et al. End-to-end multi-particle reconstruction in high occupancy imaging calorimeters with graph neural networks. Eur. Phys. J. C 82, 753 (2022).

    Article  ADS  Google Scholar 

  87. Bhattacharya, S. et al. GNN-based end-to-end reconstruction in the CMS Phase 2 High-Granularity Calorimeter. Preprint at https://doi.org/10.48550/arXiv.2203.01189 (2022).

  88. Cacciari, M., Salam, G. P. & Soyez, G. The anti-kt jet clustering algorithm. J. High Energy Phys. 04, 063 (2008).

    Article  MATH  ADS  Google Scholar 

  89. Dokshitzer, Y. L., Leder, G. D., Moretti, S. & Webber, B. R. Better jet clustering algorithms. J. High Energy Phys. 08, 001 (1997).

    Article  ADS  Google Scholar 

  90. Ju, X. & Nachman, B. Supervised jet clustering with graph neural networks for Lorentz boosted bosons. Phys. Rev. D 102, 075014 (2020).

    Article  ADS  Google Scholar 

  91. Verma, Y. & Jena, S. Jet characterization in heavy ion collisions by QCD-aware graph neural networks. Preprint at https://doi.org/10.48550/arxiv.2103.14906 (2021).

  92. Bertolini, D., Harris, P., Low, M. & Tran, N. Pileup per particle identification. J. High Energy Phys. 10, 059 (2014).

    Article  ADS  Google Scholar 

  93. Martinez, J. A., Cerri, O., Pierini, M., Spiropulu, M. & Vlimant, J.-R. Pileup mitigation at the Large Hadron Collider with graph neural networks. Preprint at https://doi.org/10.48550/arXiv.1810.07988 (2019).

  94. Li, Y., Tarlow, D., Brockschmidt, M. & Zemel, R. Gated graph sequence neural networks (2015). Preprint at https://doi.org/10.48550/arXiv.1511.05493 (2015).

  95. Mikuni, V. & Canelli, F. ABCNet: an attention-based method for particle tagging. Eur. Phys. J. Plus 135, 463 (2020).

    Article  Google Scholar 

  96. Chen, C., Fragonara, L. Z. & Tsourdos, A. GAPointNet: graph attention based point neural network for exploiting local feature of point cloud. Neurocomputing 438, 122–132 (2021).

    Article  Google Scholar 

  97. Fenton, M. J. et al. Permutationless many-jet event reconstruction with symmetry preserving attention networks. Phys. Rev. D 105, 112008 (2022).

    Article  ADS  Google Scholar 

  98. Lee, J. S. H., Park, I., Watson, I. J. & Yang, S. Zero-permutation jet-parton assignment using a self-attention network. Preprint at https://doi.org/10.48550/arXiv.2012.03542 (2020).

  99. Larkoski, A. J., Moult, I. & Nachman, B. Jet substructure at the large Hadron collider: a review of recent advances in theory and machine learning. Phys. Rep. 841, 1–63 (2020).

    Article  ADS  Google Scholar 

  100. Thaler, J. & Van Tilburg, K. Identifying boosted objects with N-subjettiness. J. High Energy Phys. 2011, 15 (2011).

    Article  Google Scholar 

  101. de Oliveira, L., Kagan, M., Mackey, L., Nachman, B. & Schwartzman, A. Jet-images — deep learning edition. J. High Energy Phys. 07, 069 (2016).

    Article  Google Scholar 

  102. Qu, H. & Gouskos, L. Jet tagging via particle clouds. Phys. Rev. D 101, 056019 (2020).

    Article  ADS  Google Scholar 

  103. Guo, M.-H. et al. PCT: point cloud transformer. Comput. Vis. Media 7, 187–199 (2021).

    Article  Google Scholar 

  104. Mikuni, V. & Canelli, F. Point cloud transformers applied to collider physics. Mach. Learn. Sci. Technol. 2, 035027 (2021).

    Article  Google Scholar 

  105. Bernreuther, E., Finke, T., Kahlhoefer, F., Krämer, M. & Mück, A. Casting a graph net to catch dark showers. SciPost Phys. 10, 046 (2021).

    Article  ADS  Google Scholar 

  106. Moreno, E. A. et al. JEDI-net: a jet identification algorithm based on interaction networks. Eur. Phys. J. C 80, 58 (2020).

    Article  ADS  Google Scholar 

  107. Chakraborty, A., Lim, S. H., Nojiri, M. M. & Takeuchi, M. Neural network-based top tagger with two-point energy correlations and geometry of soft emissions. J. High Energy Phys. 2020, 111 (2020).

    Article  Google Scholar 

  108. Santoro, A. et al. A simple neural network module for relational reasoning. In Advances in Neural Information Processing Systems, vol. 30 (eds Guyon, I. et al.) (Curran Associates, 2017); https://proceedings.neurips.cc/paper/2017/file/e6acf4b0f69f6f6e60e9a815938aa1ff-Paper.pdf.

  109. Moreno, E. A. et al. Interaction networks for the identification of boosted \(h\to b\overline{b}\) decays. Phys. Rev. D 102, 012010 (2020).

  110. Gong, S. et al. An efficient Lorentz equivariant graph neural network for jet tagging. J. High Energy Phys. 2022, 030 (2022).

    Article  MathSciNet  Google Scholar 

  111. Murnane, D., Thais, S. & Wong, J. Semi-equivariant GNN architectures for jet tagging. Preprint at https://arxiv.org/abs/2202.06941 (2022).

  112. Satorras, V. G., Hoogeboom, E. & Welling, M. E(n) equivariant graph neural networks. Preprint at https://doi.org/10.48550/arXiv.2102.09844 (2021).

  113. Bogatskiy, A. et al. Symmetry group equivariant architectures for physics. Preprint at https://arxiv.org/abs/2203.06153 (2022).

  114. Shlomi, J. et al. Secondary vertex finding in jets with neural networks. Eur. Phys. J. C 81, 540 (2021).

    Article  ADS  Google Scholar 

  115. Battaglia, P. W. et al. Relational inductive biases, deep learning, and graph networks. Preprint at https://doi.org/10.48550/arXiv.1806.01261 (2018).

  116. ATLAS Collaboration. Deep sets based neural networks for impact parameter flavour tagging in ATLAS. ATL-PHYS-PUB-2020-014 http://cds.cern.ch/record/2718948 (2020).

  117. Dreyer, F. A., Salam, G. P. & Soyez, G. The Lund jet plane. J. High Energy Phys. https://doi.org/10.1007/JHEP12(2018)064 (2018).

  118. Dreyer, F. A. & Qu, H. Jet tagging in the Lund plane with graph networks. J. High Energy Phys. 2021, 52 (2021).

    Article  Google Scholar 

  119. Abdughani, M., Ren, J., Wu, L. & Yang, J. M. Probing stop pair production at the LHC with graph neural networks. J. High Energy Phys. 2019, 55 (2019).

    Article  Google Scholar 

  120. Ren, J., Wu, L. & Yang, J. M. Unveiling CP property of top-Higgs coupling with graph neural networks at the LHC. Phys. Lett. B 802, 135198 (2020).

    Article  Google Scholar 

  121. Abdughani, M., Wang, D., Wu, L., Yang, J. M. & Zhao, J. Probing triple Higgs coupling with machine learning at the LHC. Phys. Rev. D 104, 056003 (2021).

    Article  ADS  Google Scholar 

  122. Atkinson, O. et al. Improved constraints on effective top quark interactions using edge convolution networks. J. High Energy Phys. 2022, 137 (2022).

    Article  Google Scholar 

  123. Guo, J., Li, J., Li, T. & Zhang, R. The boosted Higgs jet reconstruction via graph neural network. Phys. Rev. D 103, 116025 (2021).

    Article  ADS  Google Scholar 

  124. Gray, L., Klijnsma, T. & Ghosh, S. A dynamic reduction network for point clouds. Preprint at https://doi.org/10.48550/arxiv.2003.08013 (2020).

  125. Rothman, S. Calibrating Electrons and Photons in the CMS ECAL using Graph Neural Networks. Tech. Rep. (CERN, 2021); https://cds.cern.ch/record/2799575.

  126. Badiali, C. et al. Efficiency parameterization with neural networks. Comput. Softw. Big Sci. 5, 14 (2021).

    Article  ADS  Google Scholar 

  127. Kasieczka, G. et al. The LHC Olympics 2020: a community challenge for anomaly detection in high energy physics. Rep. Prog. Phys. 84, 124201 (2021).

    Article  ADS  Google Scholar 

  128. Kasieczka, G., Nachman, B. & Shih, D. R&D Dataset for LHC Olympics 2020 Anomaly Detection Challenge https://doi.org/10.5281/zenodo.6466204 (2019).

  129. Barrow, H. G., Tenenbaum, J. M., Bolles, R. C. & Wolf, H. C. Parametric correspondence and chamfer matching: two new techniques for image matching. In Proc. 5th International Joint Conference on Artificial Intelligence Vol. 2, 659–663 (Morgan Kaufmann, 1977).

  130. Tsan, S. et al. Particle graph autoencoders and differentiable, learned energy mover’s distance. Preprint at http://arxiv.org/abs/2111.12849 (2021).

  131. Komiske, P. T., Metodiev, E. M. & Thaler, J. Metric space of collider events. Phys. Rev. Lett. 123, 041801 (2019).

    Article  ADS  Google Scholar 

  132. Atkinson, O., Bhardwaj, A., Englert, C., Ngairangbam, V. S. & Spannowsky, M. Anomaly detection with convolutional graph neural networks. J. High Energy Phys. 2021, 80 (2021).

    Article  Google Scholar 

  133. Goodfellow, I. J. et al. Generative adversarial networks. Preprint at https://doi.org/10.48550/arXiv.1406.2661 (2014).

  134. Kansal, R. et al. Graph generative adversarial networks for sparse data generation in high energy physics. Preprint at https://doi.org/10.48550/arXiv.2012.00173 (2021).

  135. Kansal, R., et al. Particle cloud generation with message passing generative adversarial networks. In Advances in Neural Information Processing Systems (NeurIPS, 2021); https://nips.cc/virtual/2021/poster/28495.

  136. Caillou, S. et al. ATLAS ITk Track Reconstruction with a GNN-Based Pipeline. Tech. Rep. (CERN, 2022); http://cds.cern.ch/record/2815578.

  137. ATLAS Collaboration. Standard Model Summary Plots February 2022. Tech. Rep. (CERN, 2022); http://cds.cern.ch/record/2804061. All figures including auxiliary figures are available at https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PUBNOTES/ATL-PHYS-PUB-2022-009.

  138. Gateway to the public site of the HH cross-section recommendations of the LHC Higgs Working Group. https://twiki.cern.ch/twiki/bin/view/LHCPhysics/LHCHWGHH (accessed 13 May 2022).

  139. CMS Collaboration. Cutaway diagrams of CMS detector (CERN, 2019). All figures are available at https://cds.cern.ch/record/2665537.

Download references

Acknowledgements

J.-R.V. is partially supported by the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (grant agreement no. 772369) and by the US DOE, Office of Science, Office of High Energy Physics under award nos. DE-SC0011925, DE-SC0019227 and DE-AC02-07CH11359.

Author information

Authors and Affiliations

Authors

Contributions

The authors contributed equally to all aspects of the article.

Corresponding author

Correspondence to Gage DeZoort.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Physics thanks Gunar Ernis, Satyajit Jena and Xiangyang Ju for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Related links

Official public site of the ALICE experiment: https://home.cern/science/experiments/alice

Official public site of the ATLAS experiment: https://home.cern/science/experiments/atlas

Official public site of the CMS experiment: https://home.cern/science/experiments/cms

Official public site of the LHCb experiment: https://home.cern/science/experiments/lhcb

Official public site of the Large Hadron Collier: https://home.cern/science/accelerators/large-hadron-collider

Official public site of the HH cross-section recommendations of the LHC Higgs Working Group: https://twiki.cern.ch/twiki/bin/view/LHCPhysics/LHCHWGHH

Official public site of the High Luminosity LHC project: https://hilumilhc.web.cern.ch/content/hl-lhc-project

Supplementary information

Glossary

Attributed graphs

Graphs endowed with node features (X), edge features (E) or global features (P) are called attributed graphs.

Bidirected graphs

Graphs containing directed edges, where for every (u,v) E there is a corresponding (v,u) E, also appear in the literature122.

Directed edges

Edges that have an associated directionality, where the ordered tuple (u,v) implies that node u sends the edge and node v receives.

Heterogeneous graphs

Graphs are considered to be heterogeneous if they have different types of nodes/edges.

Hypergraphs

Hypergraphs generalize graphs by allowing for k-edge connectivity, where k-edges are edges that connect sets of k nodes. Standard graphs comprise 2-edges encoding only pairwise relations between nodes.

IRC-safe observables

Infrared and collinear-safe observables that do not change under the addition of low-energy particles (soft emissions) or the collinear division of a particle’s momentum.

Loss functions

Often referred to as objective functions, these are the functions that are minimized during the training of machine-learning (ML) algorithms.

Point clouds

Sets of data points arranged in space.

Trees

Trees are a special case of connected graphs in which nodes are connected by exactly one path; in this case, edges are called branches.

Truth information

Labels attached to data; frequently this refers to the target quantities that ML algorithms are trained to predict, and it is often used in high-energy physics jargon to describe simulation labels (for example kinematics, particle identities, particle origins).

Undirected edges

Edges that have no associated directionality so that (u,v) = (v,u).

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

DeZoort, G., Battaglia, P.W., Biscarat, C. et al. Graph neural networks at the Large Hadron Collider. Nat Rev Phys 5, 281–303 (2023). https://doi.org/10.1038/s42254-023-00569-0

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s42254-023-00569-0

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing