Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Structure and engineering of miniature Acidibacillus sulfuroxidans Cas12f1

Abstract

The miniature CRISPR-Cas12f nucleases enable efficient delivery via cargo-size-limited vehicles, thereby showing promise for in vivo therapeutic applications. Acidibacillus sulfuroxidans Cas12f1 (AsCas12f1, 422 amino acids) is one of the most compact Cas12f nucleases and exhibits moderate genome-editing activity in human cells compared with Cas9 and Cas12a. Understanding the mechanisms of why such a compact nuclease is active for genome editing would facilitate its rational engineering. Here we show the cryo-electron microscopy structure of the AsCas12f1–sgRNA–dsDNA ternary complex, and reveal that AsCas12f1 functions as an asymmetric dimer for sgRNA binding and DNA targeting. The mechanisms of dimer formation, protospacer adjacent motif recognition and sgRNA accommodation are elucidated. Based on these findings, we extensively engineer this system and have produced an evolved AsCas12f1–sgRNA combination with drastically enhanced genome-editing activity in human cells. These results provide further understanding of compact CRISPR systems and expand the mini CRISPR toolbox for therapeutic applications.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Cryo-EM structure of the AsCas12f1–sgRNA–dsDNA ternary complex.
Fig. 2: Structural comparison between AsCas12f1 and Un1Cas12f1.
Fig. 3: Molecular interactions in the AsCas12f1 homodimer.
Fig. 4: PAM recognition mechanism.
Fig. 5: Architecture of the sgRNA and its engineering.
Fig. 6: Structure-directed engineering of AsCas12f1.
Fig. 7: Systematic evaluation of the engineered CRISPR-AsCas12f1 system.

Data availability

The structure of AsCas12f1 in complex with sgRNA and target DNA has been deposited in the Protein Data Bank under the accession code 7WJU, and in the EMDB under the accession code EMD-32548. All other data are available from the corresponding authors. Source data are provided with this paper.

Code availability

The sequencing data for evaluating indel efficiencies are demultiplexed by using barcodeSpliter (https://github.com/atlasbioinfo/barcodeSpliter). The indel efficiencies are evaluated by using the CRISPResso2 suite which is available at GitHub (https://github.com/pinellolab/CRISPResso2). The computational pipeline for GUIDE-seq is available at GitHub (https://github.com/aryeelab/guideseq).

References

  1. Makarova, K. S. et al. Evolutionary classification of CRISPR-Cas systems: a burst of class 2 and derived variants. Nat. Rev. Microbiol. 18, 67–83 (2020).

    Article  CAS  PubMed  Google Scholar 

  2. Wang, J. Y., Pausch, P. & Doudna, J. A. Structural biology of CRISPR-Cas immunity and genome editing enzymes. Nat. Rev. Microbiol. 20, 641–656 (2022).

    Article  CAS  PubMed  Google Scholar 

  3. Jinek, M. et al. A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science 337, 816–821 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Zetsche, B. et al. Cpf1 is a single RNA-guided endonuclease of a class 2 CRISPR-Cas system. Cell 163, 759–771 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Li, G. et al. Gene editing and its applications in biomedicine. Sci. China Life. Sci. 65, 660–700 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Komor, A. C., Kim, Y. B., Packer, M. S., Zuris, J. A. & Liu, D. R. Programmable editing of a target base in genomic DNA without double-stranded DNA cleavage. Nature 533, 420–424 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Nishida, K. et al. Targeted nucleotide editing using hybrid prokaryotic and vertebrate adaptive immune systems. Science 353, aaf8729 (2016).

    Article  PubMed  Google Scholar 

  8. Gaudelli, N. M. et al. Programmable base editing of A*T to G*C in genomic DNA without DNA cleavage. Nature 551, 464–471 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Anzalone, A. V. et al. Search-and-replace genome editing without double-strand breaks or donor DNA. Nature 576, 149–157 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Wu, Z. et al. Strategies for developing CRISPR-based gene editing methods in bacteria. Small Methods 4, 1900560 (2020).

    Article  CAS  Google Scholar 

  11. Zhu, H., Li, C. & Gao, C. Applications of CRISPR-Cas in agriculture and plant biotechnology. Nat. Rev. Mol. Cell Biol. 21, 661–677 (2020).

    Article  CAS  PubMed  Google Scholar 

  12. Gillmore, J. D. et al. CRISPR-Cas9 in vivo gene editing for transthyretin amyloidosis. N. Engl. J. Med. 385, 493–502 (2021).

    Article  CAS  PubMed  Google Scholar 

  13. Raje, N. et al. Anti-BCMA CAR T-cell therapy bb2121 in relapsed or refractory multiple myeloma. N. Engl. J. Med. 380, 1726–1737 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Yin, D. et al. Targeting herpes simplex virus with CRISPR-Cas9 cures herpetic stromal keratitis in mice. Nat. Biotechnol. 39, 567–577 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Wang, D., Tai, P. W. L. & Gao, G. Adeno-associated virus vector as a platform for gene therapy delivery. Nat. Rev. Drug Discov. 18, 358–378 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Liu, J. J. et al. CasX enzymes comprise a distinct family of RNA-guided genome editors. Nature 566, 218–223 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Wu, Z. et al. Programmed genome editing by a miniature CRISPR-Cas12f nuclease. Nat. Chem. Biol. 17, 1132–1138 (2021).

    Article  CAS  PubMed  Google Scholar 

  18. Karvelis, T. et al. PAM recognition by miniature CRISPR-Cas12f nucleases triggers programmable double-stranded DNA target cleavage. Nucleic Acids Res. 48, 5016–5023 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Takeda, S. N. et al. Structure of the miniature type V-F CRISPR-Cas effector enzyme. Mol. Cell 81, 558–570.e553 (2021).

    Article  CAS  PubMed  Google Scholar 

  20. Xiao, R., Li, Z., Wang, S., Han, R. & Chang, L. Structural basis for substrate recognition and cleavage by the dimerization-dependent CRISPR-Cas12f nuclease. Nucleic Acids Res. 49, 4120–4128 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Yan, W. X. et al. Functionally diverse type V CRISPR-Cas systems. Science 363, 88–91 (2019).

    Article  CAS  PubMed  Google Scholar 

  22. Zhang, H., Li, Z., Xiao, R. & Chang, L. Mechanisms for target recognition and cleavage by the Cas12i RNA-guided endonuclease. Nat. Struct. Mol. Biol. 27, 1069–1076 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Huang, X. et al. Structural basis for two metal-ion catalysis of DNA cleavage by Cas12i2. Nat. Commun. 11, 5241 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Zhang, B. et al. Mechanistic insights into the R-loop formation and cleavage in CRISPR-Cas12i1. Nat. Commun. 12, 3476 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  25. Pausch, P. et al. CRISPR-CasΦ from huge phages is a hypercompact genome editor. Science 369, 333–337 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Pausch, P. et al. DNA interference states of the hypercompact CRISPR-CasΦ effector. Nat. Struct. Mol. Biol. 28, 652–661 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Carabias, A. et al. Structure of the mini-RNA-guided endonuclease CRISPR-Cas12j3. Nat. Commun. 12, 4476 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Sun, A. et al. The compact Casπ (Cas12l) ‘bracelet’ provides a unique structural platform for DNA manipulation. Cell Res. 33, 229–244 (2023).

    Article  CAS  PubMed  Google Scholar 

  29. Al-Shayeb, B. et al. Diverse virus-encoded CRISPR-Cas systems include streamlined genome editors. Cell 185, 4574–4586.e4516 (2022).

    Article  CAS  PubMed  Google Scholar 

  30. Karvelis, T. et al. Transposon-associated TnpB is a programmable RNA-guided DNA endonuclease. Nature 599, 692–696 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Altae-Tran, H. et al. The widespread IS200/IS605 transposon family encodes diverse programmable RNA-guided endonucleases. Science 374, 57–65 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Schuler, G., Hu, C. & Ke, A. Structural basis for RNA-guided DNA cleavage by IscB-ωRNA and mechanistic comparison with Cas9. Science 376, 1476–1481 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Karvelis, T. et al. PAM recognition by miniature CRISPR nucleases triggers programmable double-stranded DNA target cleavage. Preprint at https://www.biorxiv.org/content/10.1101/654897v1 (2020).

  34. Bigelyte, G. et al. Miniature type V-F CRISPR-Cas nucleases enable targeted DNA modification in cells. Nat. Commun. 12, 6191 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  35. Zhang, H. et al. An engineered xCas12i with high activity, high specificity, and broad PAM range. Protein Cell https://doi.org/10.1093/procel/pwac052 (2022).

  36. Xu, X. et al. Engineered miniature CRISPR-Cas system for mammalian genome regulation and editing. Mol. Cell 81, 4333–4345.e4334 (2021).

    Article  CAS  PubMed  Google Scholar 

  37. Kim, D. Y. et al. Efficient CRISPR editing with a hypercompact Cas12f1 and engineered guide RNAs delivered by adeno-associated virus. Nat. Biotechnol. 40, 94–102 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  38. Tsuchida, C. A. et al. Chimeric CRISPR-CasX enzymes and guide RNAs for improved genome editing activity. Mol. Cell 82, 1199–1209.e1196 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. McGaw, C. et al. Engineered Cas12i2 is a versatile high-efficiency platform for therapeutic genome editing. Nat. Commun. 13, 2833 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Chen, Y. et al. Synergistic engineering of CRISPR-Cas nucleases enables robust mammalian genome editing. Innovation 3, 100264 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Harrington, L. B. et al. Programmed DNA destruction by miniature CRISPR-Cas14 enzymes. Science 362, 839–842 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Nakagawa, R. et al. Cryo-EM structure of the transposon-associated TnpB enzyme. Nature, https://doi.org/10.1038/s41586-023-05933-9 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  43. Sasnauskas, G. et al. TnpB structure reveals minimal functional core of Cas12 nuclease family. Nature, https://doi.org/10.1038/s41586-023-05826-x (2023).

    Article  PubMed  Google Scholar 

  44. Yang, H., Gao, P., Rajashankar, K. R. & Patel, D. J. PAM-dependent target DNA recognition and cleavage by C2c1 CRISPR-Cas endonuclease. Cell 167, 1814–1828.e1812 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Yamano, T. et al. Crystal structure of Cpf1 in complex with guide RNA and target DNA. Cell 165, 949–962 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Huang, H. et al. Comparison of DNA targeting CRISPR editors in human cells. Cell Biosci. 13, 11 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  47. Tsai, S. Q. et al. GUIDE-seq enables genome-wide profiling of off-target cleavage by CRISPR-Cas nucleases. Nat. Biotechnol. 33, 187–197 (2015).

    Article  CAS  PubMed  Google Scholar 

  48. Xin, C. et al. Comprehensive assessment of miniature CRISPR-Cas12f nucleases for gene disruption. Nat. Commun. 13, 5623 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Lei, J. & Frank, J. Automated acquisition of cryo-electron micrographs for single particle reconstruction on an FEI Tecnai electron microscope. J. Struct. Biol. 150, 69–80 (2005).

    Article  PubMed  Google Scholar 

  50. Zheng, S. Q. et al. MotionCor2: anisotropic correction of beam-induced motion for improved cryo-electron microscopy. Nat. Methods 14, 331–332 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Grant, T. & Grigorieff, N. Measuring the optimal exposure for single particle cryo-EM using a 2.6 Å reconstruction of rotavirus VP6. Elife 4, e06980 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  52. Zhang, K. Gctf: real-time CTF determination and correction. J. Struct. Biol. 193, 1–12 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Chen, S. et al. High-resolution noise substitution to measure overfitting and validate resolution in 3D structure determination by single particle electron cryomicroscopy. Ultramicroscopy 135, 24–35 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Punjani, A., Rubinstein, J. L., Fleet, D. J. & Brubaker, M. A. cryoSPARC: algorithms for rapid unsupervised cryo-EM structure determination. Nat. Methods 14, 290–296 (2017).

    Article  CAS  PubMed  Google Scholar 

  55. Punjani, A., Zhang, H. & Fleet, D. J. Non-uniform refinement: adaptive regularization improves single-particle cryo-EM reconstruction. Nat. Methods 17, 1214–1221 (2020).

    Article  CAS  PubMed  Google Scholar 

  56. Rosenthal, P. B. & Henderson, R. Optimal determination of particle orientation, absolute hand, and contrast loss in single-particle electron cryomicroscopy. J. Mol. Biol. 333, 721–745 (2003).

    Article  CAS  PubMed  Google Scholar 

  57. Emsley, P., Lohkamp, B., Scott, W. G. & Cowtan, K. Features and development of Coot. Acta Crystallogr. D 66, 486–501 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Afonine, P. V. et al. Real-space refinement in PHENIX for cryo-EM and crystallography. Acta Crystallogr. D 74, 531–544 (2018).

    Article  CAS  Google Scholar 

  59. Katoh, K. & Standley, D. M. MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Mol. Biol. Evol. 30, 772–780 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Price, M. N., Dehal, P. S. & Arkin, A. P. FastTree: computing large minimum evolution trees with profiles instead of a distance matrix. Mol. Biol. Evol. 26, 1641–1650 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Letunic, I. & Bork, P. Interactive Tree Of Life (iTOL) v5: an online tool for phylogenetic tree display and annotation. Nucleic Acids Res. 49, W293–W296 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Zhang, Y. et al. Programmable adenine deamination in bacteria using a Cas9-adenine-deaminase fusion. Chem. Sci. 11, 1657–1664 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Clement, K. et al. CRISPResso2 provides accurate and rapid genome editing sequence analysis. Nat. Biotechnol. 37, 224–226 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by grants 2022YFC3400200 from the National Key R&D Program of China; LG-QS-202206-05 from the Lingang Laboratory; 22277078, 2207783 and 22207074 from the National Natural Science Foundation of China; 22ZR1480100 and 22YF1428100 from the Shanghai Committee of Science and Technology, China; KF-202303 from the Open Research Fund of the National Center for Protein Sciences at Peking University in Beijing; and EKPG21-18 from the Emergency Key Program of Guangzhou Laboratory. The authors also thank the Analytical Instrumentation Center, SPST, ShanghaiTech University for technical support with the ICP-OES.

Author information

Authors and Affiliations

Authors

Contributions

Z. Wu and Q.J. conceived the initial study. Z. Wu, D.L., Z.Z., Y.Q. and H.S. determined the structure of the AsCas12f1 effector complex. Z. Wu, D.P., J.S., J.M., W.F., Z. Wang, F.L. and W.C. performed plasmid construction, protein purification and biochemical experiments. Z. Wu, D.P., J.S., J.M., W.F. and H.Y. performed the genome editing in human cells and NGS data analyses. Z. Wu, D.P., D.L., X.H., H.S. and Q.J analysed and discussed the experimental data. Z. Wu and Q.J. prepared the figures and wrote the paper. The paper was reviewed and approved by all coauthors.

Corresponding authors

Correspondence to Huaizong Shen or Quanjiang Ji.

Ethics declarations

Competing interests

Q.J., Zhaowei Wu and D.P. have filed a patent application (PCT/CN2022/113357) related to this work through ShanghaiTech University. The remaining authors declare no competing interest.

Peer review

Peer review information

Nature Catalysis thanks Feng Gu, Ervin Welker, and Ning Jia for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Table 1 and Supplementary Figs. 1-13.

Reporting Summary

Supplementary Data 1 and 2

Information for DNA and RNA sequences used in this study.

Supplementary Data 3

Statistical source data and unmodified gel images for Supplementary Figures.

Source data

Source Data Figs. 3–7

Statistical source data for Figs. 3c, 4d, 5e,f, 6a,c,d and 7.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, Z., Liu, D., Pan, D. et al. Structure and engineering of miniature Acidibacillus sulfuroxidans Cas12f1. Nat Catal 6, 695–709 (2023). https://doi.org/10.1038/s41929-023-00995-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41929-023-00995-4

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing