Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

High-mobility p-channel wide-bandgap transistors based on hydrogen-terminated diamond/hexagonal boron nitride heterostructures

This article has been updated

Abstract

Field-effect transistors made of wide-bandgap semiconductors can operate at high voltages, temperatures and frequencies with low energy losses, and are important for power and high-frequency electronics. However, wide-bandgap p-channel transistors perform poorly compared with n-channel ones, making complimentary circuits difficult to achieve. Hydrogen-terminated diamond is a potential p-type material for such devices, but surface transfer doping—thought to be required to generate conductivity—limits performance because it requires ionized surface acceptors that can lead to hole scattering. Here we show that p-channel wide-bandgap heterojunction field-effect transistors can be created, without surface transfer doping, using a hydrogen-terminated diamond channel and hexagonal boron nitride gate insulator. Despite having a reduced density of surface acceptors, the transistors have a low sheet resistance (1.4 kΩ) and large ON current (1,600 μm mA mm−1) compared with other p-channel wide-bandgap transistors, due to a high room-temperature Hall mobility (680 cm2 V−1 s−1). The transistors also exhibit normally OFF behaviour with an ON/OFF ratio of 108.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Diamond FET with hBN gate insulator and graphite gate.
Fig. 2: Reduction in acceptor density on hydrogen-terminated diamond with no exposure to air.
Fig. 3: Electrical characteristics of diamond FET at room temperature.
Fig. 4: Temperature-dependent electrical characteristics of diamond FET.
Fig. 5: Comparison of room-temperature performances of diamond FET and earlier works.

Similar content being viewed by others

Data availability

Source data are provided with this paper. All other data that support the plots within this paper and other findings of this study are available from the corresponding author upon reasonable request.

Change history

  • 07 February 2022

    In the version of this article initially published, an extraneous minus sign appeared at the start of the y-axis label for Fig. 3d. The symbol has now been removed from the html and PDF versions of the article.

References

  1. Bader, S. J. et al. Prospects for wide bandgap and ultrawide bandgap CMOS devices. IEEE Trans. Electron Devices 67, 4010–4020 (2020).

    Article  Google Scholar 

  2. Reuters, B. et al. Fabrication of p-channel heterostructure field effect transistors with polarization-induced two-dimensional hole gases at metal–polar GaN/AlInGaN interfaces. J. Phys. D: Appl. Phys. 47, 175103 (2014).

    Article  Google Scholar 

  3. Nakajima, A., Sumida, Y., Dhyani, M. H., Kawai, H. & Narayanan, E. S. High density two-dimensional hole gas induced by negative polarization at GaN/AlGaN heterointerface. Appl. Phys. Express 3, 121004 (2010).

    Article  Google Scholar 

  4. Chaudhuri, R. et al. A polarization-induced 2D hole gas in undoped gallium nitride quantum wells. Science 365, 1454–1457 (2019).

    Article  Google Scholar 

  5. Krishna, A., Raj, A., Hatui, N., Keller, S. & Mishra, U. K. Investigation of nitrogen polar p-type doped GaN/AlxGa(1−x)N superlattices for applications in wide-bandgap p-type field effect transistors. Appl. Phys. Lett. 115, 172105 (2019).

    Article  Google Scholar 

  6. Zheng, Z. et al. High Ion and Ion/Ioff ratio enhancement-mode buried p-channel GaN MOSFETs on p-GaN gate power HEMT platform. IEEE Electron Device Lett. 41, 26–29 (2020).

    Article  Google Scholar 

  7. Raj, A. et al. Demonstration of a GaN/AlGaN superlattice-based p-channel FinFET with high ON-current. IEEE Electron Device Lett. 41, 220–223 (2020).

    Article  Google Scholar 

  8. Krishna, A. et al. AlGaN/GaN superlattice-based p-type field-effect transistor with tetramethylammonium hydroxide treatment. Phys. Status Solidi A 217, 1900692 (2020).

    Article  Google Scholar 

  9. Nanen, Y., Kato, M., Suda, J. & Kimoto, T. Effects of nitridation on 4H-SiC MOSFETs fabricated on various crystal faces. IEEE Trans. Electron Devices 60, 1260–1262 (2013).

    Article  Google Scholar 

  10. Hatakeyama, T. et al. Characterization of traps at nitrided SiO2/SiC interfaces near the conduction band edge by using Hall effect measurements. Appl. Phys. Express 10, 046601 (2017).

    Article  Google Scholar 

  11. Okamoto, M., Tanaka, M., Yatsuo, T. & Fukuda, K. Effect of the oxidation process on the electrical characteristics of 4H-SiC p-channel metal-oxide-semiconductor field-effect transistors. Appl. Phys. Lett. 89, 023502 (2006).

    Article  Google Scholar 

  12. Noborio, M., Suda, J. & Kimoto, T. P-channel mosfets on 4H-SiC {0001} and nonbasal faces fabricated by oxide deposition and N2O annealing. IEEE Trans. Electron Devices 56, 1953–1958 (2009).

    Article  Google Scholar 

  13. Pearton, S., Ren, F., Tadjer, M. & Kim, J. Perspective: Ga2O3 for ultra-high power rectifiers and MOSFETS. J. Appl. Phys. 124, 220901 (2018).

    Article  Google Scholar 

  14. Isberg, J. et al. High carrier mobility in single-crystal plasma-deposited diamond. Science 297, 1670–1672 (2002).

    Article  Google Scholar 

  15. Pernot, J. et al. Hall hole mobility in boron-doped homoepitaxial diamond. Phys. Rev. B 81, 205203 (2010).

    Article  Google Scholar 

  16. Akimoto, I., Handa, Y., Fukai, K. & Naka, N. High carrier mobility in ultrapure diamond measured by time-resolved cyclotron resonance. Appl. Phys. Lett. 105, 032102 (2014).

    Article  Google Scholar 

  17. Koizumi, S., Umezawa, H., Pernot, J. & Suzuki, M. (eds) Power Electronics Device Applications of Diamond Semiconductors (Woodhead Publishing, 2018).

  18. Geis, M. W. et al. Progress toward diamond power field-effect transistors. Phys. Status Solidi A 215, 1800681 (2018).

    Article  Google Scholar 

  19. Donato, N., Rouger, N., Pernot, J., Longobardi, G. & Udrea, F. Diamond power devices: state of the art, modelling, figures of merit and future perspective. J. Phys. D: Appl. Phys. 53, 093001 (2020).

    Article  Google Scholar 

  20. Maier, F., Riedel, M., Mantel, B., Ristein, J. & Ley, L. Origin of surface conductivity in diamond. Phys. Rev. Lett. 85, 3472–3475 (2000).

    Article  Google Scholar 

  21. Strobel, P., Riedel, M., Ristein, J. & Ley, L. Surface transfer doping of diamond. Nature 430, 439–441 (2004).

    Article  Google Scholar 

  22. Verona, C. et al. V2O5 MISFETs on H-terminated diamond. IEEE Trans. Electron Devices 63, 4647–4653 (2016).

    Article  Google Scholar 

  23. Kawarada, H. et al. Durability-enhanced two-dimensional hole gas of C-H diamond surface for complementary power inverter applications. Sci. Rep. 7, 42368 (2017).

    Article  Google Scholar 

  24. Ren, Z. et al. Diamond field effect transistors with MoO3 gate dielectric. IEEE Electron Device Lett. 38, 786–789 (2017).

    Article  Google Scholar 

  25. Kasu, M. Diamond field-effect transistors for RF power electronics: novel NO2 hole doping and low-temperature deposited Al2O3 passivation. Jpn. J. Appl. Phys. 56, 01AA01 (2017).

    Article  Google Scholar 

  26. Yu, X. et al. A high frequency hydrogen-terminated diamond MISFET with fT/fmax of 70/80 GHz. IEEE Electron Device Lett. 39, 1373–1376 (2018).

    Article  Google Scholar 

  27. Yin, Z. et al. Enhanced transport in transistor by tuning transition-metal oxide electronic states interfaced with diamond. Sci. Adv. 4, eaau0480 (2018).

    Article  Google Scholar 

  28. Geis, M. et al. Stable, low-resistance, 1.5 to 3.5 kΩ sq−1, diamond surface conduction with a mixed metal-oxide protective film. Diam. Relat. Mater. 106, 107819 (2020).

    Article  Google Scholar 

  29. Li, Y. et al. Mobility of two-dimensional hole gas in H-terminated diamond. Phys. Status Solidi RRL 12, 1700401 (2018).

    Article  Google Scholar 

  30. Sasama, Y. et al. Charge-carrier mobility in hydrogen-terminated diamond field-effect transistors. J. Appl. Phys. 127, 185707 (2020).

    Article  Google Scholar 

  31. Sasama, Y. et al. High-mobility diamond field effect transistor with a monocrystalline h-BN gate dielectric. APL Mater. 6, 111105 (2018).

    Article  Google Scholar 

  32. Sasama, Y. et al. Quantum oscillations in diamond field-effect transistors with a h-BN gate dielectric. Phys. Rev. Mater. 3, 121601(R) (2019).

    Article  Google Scholar 

  33. Zibrov, A. A. et al. Tunable interacting composite fermion phases in a half-filled bilayer-graphene Landau level. Nature 549, 360–364 (2017).

    Article  Google Scholar 

  34. Castellanos-Gomez, A. et al. Deterministic transfer of two-dimensional materials by all-dry viscoelastic stamping. 2D Mater. 1, 011002 (2014).

    Article  Google Scholar 

  35. Sque, S. J., Jones, R. & Briddon, P. R. Structure, electronics, and interaction of hydrogen and oxygen on diamond surfaces. Phys. Rev. B 73, 085313 (2006).

    Article  Google Scholar 

  36. Stepanov, P. et al. Untying the insulating and superconducting orders in magic-angle graphene. Nature 583, 375–378 (2020).

    Article  Google Scholar 

  37. Young, A. et al. Electronic compressibility of layer-polarized bilayer graphene. Phys. Rev. B 85, 235458 (2012).

    Article  Google Scholar 

  38. Kitabayashi, Y. et al. Normally-off C-H diamond MOSFETs with partial C-O channel achieving 2-kV breakdown voltage. IEEE Electron Device Lett. 38, 363–366 (2017).

    Article  Google Scholar 

  39. Zhang, J.-F. et al. Characterization and mobility analysis of normally off hydrogen-terminated diamond metal–oxide–semiconductor field-effect transistors. Phys. Status Solidi A 217, 1900462 (2020).

    Article  Google Scholar 

  40. Liu, J. W., Oosato, H., Liao, M. Y. & Koide, Y. Enhancement-mode hydrogenated diamond metal-oxide-semiconductor field-effect transistors with Y2O3 oxide insulator grown by electron beam evaporator. Appl. Phys. Lett. 110, 203502 (2017).

    Article  Google Scholar 

  41. Oi, N. et al. Normally-off two-dimensional hole gas diamond MOSFETs through nitrogen-ion implantation. IEEE Electron Device Lett. 40, 933–936 (2019).

    Article  Google Scholar 

  42. Tordjman, M., Weinfeld, K. & Kalish, R. Boosting surface charge-transfer doping efficiency and robustness of diamond with WO3 and ReO3. Appl. Phys. Lett. 111, 111601 (2017).

    Article  Google Scholar 

  43. Verona, C. et al. Influence of surface crystal-orientation on transfer doping of V2O5/H-terminated diamond. Appl. Phys. Lett. 112, 181602 (2018).

    Article  Google Scholar 

  44. Wang, Y.-F. et al. Normally-off hydrogen-terminated diamond field-effect transistor with Al2O3 dielectric layer formed by thermal oxidation of Al. Diam. Relat. Mater. 81, 113–117 (2018).

    Article  Google Scholar 

  45. Ren, Z. et al. High performance single crystalline diamond normally-off field effect transistors. IEEE J. Electron Devices Soc. 7, 82–87 (2018).

    Article  Google Scholar 

  46. Fei, W., Bi, T., Iwataki, M., Imanishi, S. & Kawarada, H. Oxidized Si terminated diamond and its MOSFET operation with SiO2 gate insulator. Appl. Phys. Lett. 116, 212103 (2020).

    Article  Google Scholar 

  47. Sze, S. M. and Ng, K. K. Physics of Semiconductor Devices 3rd edn (John Wiley & Sons, 2007).

  48. Saha, N. C. & Kasu, M. Heterointerface properties of diamond MOS structures studied using capacitance–voltage and conductance–frequency measurements. Diam. Relat. Mater. 91, 219–224 (2019).

    Article  Google Scholar 

  49. Matsumoto, T. et al. Inversion channel mobility and interface state density of diamond MOSFET using N-type body with various phosphorus concentrations. Appl. Phys. Lett. 114, 242101 (2019).

    Article  Google Scholar 

  50. Zhang, X. et al. Insight into Al2O3/B-doped diamond interface states with high-temperature conductance method. Appl. Phys. Lett. 117, 092104 (2020).

    Article  Google Scholar 

  51. Peterson, R. et al. Analysis of mobility-limiting mechanisms of the two-dimensional hole gas on hydrogen-terminated diamond. Phys. Rev. B 102, 075303 (2020).

    Article  Google Scholar 

  52. Takahide, Y. et al. Quantum oscillations of the two-dimensional hole gas at atomically flat diamond surfaces. Phys. Rev. B 89, 235304 (2014).

    Article  Google Scholar 

  53. Davies, J. H. The Physics of Low-Dimensional Semiconductors: An Introduction (Cambridge Univ. Press, 1998).

  54. Zhang, J. et al. Point defects in two-dimensional hexagonal boron nitride: a perspective. J. Appl. Phys. 128, 100902 (2020).

    Article  Google Scholar 

  55. Stacey, A. et al. Evidence for primal sp2 defects at the diamond surface: candidates for electron trapping and noise sources. Adv. Mater. Interfaces 6, 1801449 (2019).

    Article  Google Scholar 

  56. Tokuda, N. et al. Atomically flat diamond (111) surface formation by homoepitaxial lateral growth. Diam. Relat. Mater. 17, 1051–1054 (2008).

    Article  Google Scholar 

  57. Daligou, G. & Pernot, J. 2D hole gas mobility at diamond/insulator interface. Appl. Phys. Lett. 116, 162105 (2020).

    Article  Google Scholar 

  58. Kawarada, H. High-current metal oxide semiconductor field-effect transistors on H-terminated diamond surfaces and their high-frequency operation. Jpn. J. Appl. Phys. 51, 090111 (2012).

    Article  Google Scholar 

  59. Yamaguchi, T. et al. Low-temperature transport properties of holes introduced by ionic liquid gating in hydrogen-terminated diamond surfaces. J. Phys. Soc. Jpn 82, 074718 (2013).

    Article  Google Scholar 

  60. Macheda, F. & Bonini, N. Magnetotransport phenomena in p-doped diamond from first principles. Phys. Rev. B 98, 201201(R) (2018).

    Article  Google Scholar 

Download references

Acknowledgements

We thank H. Osato, E. Watanabe, D. Tsuya, Y. Nishimiya and F. Uesugi for their technical support. We also thank J. Inoue for helpful discussions, and T. Ando, S. Koizumi, T. Teraji, Y. Wakayama and T. Nakayama for their support. This study was financially supported by JSPS KAKENHI (grant nos. JP19J12696 (Y.S.), JP19H05790 (K.W. and T.T.), JP20H00354 (K.W. and T.T.), JP19H02605 (Y.T.) and JP25287093 (Y.T.)); the Elemental Strategy Initiative (grant no. JPMXP0112101001 (K.W. and T.T.)); and the Nanotechnology Platform Project (Y.S. and Y.T.) of MEXT, Japan.

Author information

Authors and Affiliations

Authors

Contributions

Y.T. and Y.S. conceived the project. Y.S. fabricated the devices and performed the electrical characterizations. Y.S. and Y.T. performed the data analysis and modelling. T.K., M.I. and Y.T. assisted in fabricating the devices. K.W. and T.T. grew the hBN crystals. Y.S., T.U. and Y.T. wrote the manuscript. All the authors discussed the results and commented on the manuscript.

Corresponding author

Correspondence to Yamaguchi Takahide.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information Nature Electronics thanks Nazareno Donato, Moshe Tordjman and Cui Yu for their contribution to the peer review of this work.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Sections A–F, Figs. 1–13 and Tables 1 and 2.

Source data

Source Data Fig. 1

Source data for Fig. 1.

Source Data Fig. 2

Source data for Fig. 2.

Source Data Fig. 3

Source data for Fig. 3.

Source Data Fig. 4

Source data for Fig. 4.

Source Data Fig. 5

Source data for Fig. 5.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sasama, Y., Kageura, T., Imura, M. et al. High-mobility p-channel wide-bandgap transistors based on hydrogen-terminated diamond/hexagonal boron nitride heterostructures. Nat Electron 5, 37–44 (2022). https://doi.org/10.1038/s41928-021-00689-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41928-021-00689-4

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing