Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Protocol
  • Published:

Surface nanocoating of bacteria as a versatile platform to develop living therapeutics

Abstract

Bacteria have been extensively utilized as living therapeutics for disease treatment due to their unique characteristics, such as genetic manipulability, rapid proliferation and specificity to target disease sites. Various in vivo insults can, however, decrease the vitality of dosed bacteria, leading to low overall bioavailability. Additionally, the innate antigens on the bacterial surface and the released toxins and metabolites may cause undesired safety issues. These limitations inevitably result in inadequate treatment outcomes, thereby hindering the clinical transformation of living bacterial therapeutics. Recently, we have developed a versatile platform to prepare advanced living bacterial therapeutics by nanocoating bacteria individually via either chemical decoration or physical encapsulation, which can improve bioavailability and reduce side effects for enhanced microbial therapy. Here we use interfacial self-assembly to prepare lipid membrane-coated bacteria (LCB), exhibiting increased resistance against a variety of harsh environmental conditions owing to the nanocoating’s protective capability. Meanwhile, we apply mechanical extrusion to generate cell membrane-coated bacteria (CMCB), displaying improved biocompatibility owing to the nanocoating’s shielding effect. We describe their detailed preparation procedures and demonstrate the expected functions of the coated bacteria. We also show that following oral delivery and intravenous injection in mouse models, LCB and CMCB present appealing potential for treating colitis and tumors, respectively. Compared with bioengineering that lacks versatile molecular tools for heterogeneous expression, the surface nanocoating technique is convenient to introduce functional components without restriction on bacterial strain types. Excluding bacterial culture, the fabrication of LCB takes ~2 h, while the preparation of CMCB takes ~5 h.

Key points

  • This protocol adds a surface nanocoating to bacteria via either chemical decoration or physical encapsulation to improve bioavailability and reduce side effects for enhanced microbial therapy.

  • Compared with biological engineering or genetic modification, surface nanocoating can easily introduce various functional components and can be applied to diverse bacterial strains. It can be achieved using either native or Food and Drug Administration-approved synthetic materials, ensuring satisfactory biocompatibility and safety.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Schematic illustration of the preparation and application of surface-coated bacteria for enhanced treatment.
Fig. 2: Examination of the successful coating of bacteria by lipid membranes and characterization of LCB.
Fig. 3: In vitro evaluation of LCB resistance against environmental assaults.
Fig. 4: Evaluation of in vivo resistance of LCB against gastrointestinal tract environment.
Fig. 5: Therapeutic evaluation of LCB in colitis models.
Fig. 6: Preparation and characterization of CMCB.
Fig. 7: Evaluation of the blood circulation of CMCB.
Fig. 8: Biosafety evaluation of CMCB in mice.
Fig. 9: Evaluation of CMCB in a subcutaneous 4T1 tumor model.

Similar content being viewed by others

Data availability

The main data discussed in this protocol are available in the supporting primary research papers (refs. 21,39). Source data are provided with this paper.

References

  1. Hou, K. et al. Microbiota in health and diseases. Signal Transduct. Target. Ther. 7, 135 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  2. Chung, Y. et al. A synthetic probiotic engineered for colorectal cancer therapy modulates gut microbiota. Microbiome 9, 122 (2021).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  3. Sepich-Poore, G. D. et al. The microbiome and human cancer. Science 371, eabc4552 (2021).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  4. Byrd, A. L., Belkaid, Y. & Segre, J. A. The human skin microbiome. Nat. Rev. Microbiol. 16, 143–155 (2018).

    Article  PubMed  CAS  Google Scholar 

  5. Chen, Y. E., Fischbach, M. A. & Belkaid, Y. Skin microbiota–host interactions. Nature 553, 427–436 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  6. de Vos, W. M., Tilg, H., Van Hul, M. & Cani, P. D. Gut microbiome and health: mechanistic insights. Gut 71, 1020–1032 (2022).

    Article  PubMed  Google Scholar 

  7. Lavelle, A. & Sokol, H. Gut microbiota-derived metabolites as key actors in inflammatory bowel disease. Nat. Rev. Gastroenterol. Hepatol. 17, 223–237 (2020).

    Article  PubMed  Google Scholar 

  8. Lin, S. S. et al. Mucosal immunity-mediated modulation of the gut microbiome by oral delivery of probiotics into Peyer’s patches. Sci. Adv. 7, eabf0677 (2021).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  9. Wu, H.-J. & Wu, E. The role of gut microbiota in immune homeostasis and autoimmunity. Gut Microbes 3, 4–14 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  10. Roberts, N. J. et al. Intratumoral injection of Clostridium novyi-NT spores induces antitumor responses. Sci. Transl. Med. 6, 249ra111 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  11. Xu, W. et al. Attenuated Salmonella VNP20009 mutant (DeltahtrA) is a promising candidate for bacteria-mediated tumour therapy in hosts with TNFR1 deficiency. Lett. Appl. Microbiol. 67, 97–103 (2018).

    Article  PubMed  CAS  Google Scholar 

  12. Li, R. et al. Expressing cytotoxic compounds in Escherichia coli Nissle 1917 for tumor-targeting therapy. Res. Microbiol. 170, 74–79 (2019).

    Article  PubMed  CAS  Google Scholar 

  13. Jacouton, E. et al. Anti-tumoral effects of recombinant Lactococcus lactis strain secreting IL-17A cytokine. Front. Microbiol. 9, 3355 (2018).

    Article  PubMed  Google Scholar 

  14. Fan, J. X. et al. Bacteria-mediated tumor therapy utilizing photothermally-controlled TNF-alpha expression via oral administration. Nano. Lett. 18, 2373–2380 (2018).

    Article  PubMed  CAS  Google Scholar 

  15. Agarwal, P., Khatri, P., Billack, B., Low, W.-K. & Shao, J. Oral delivery of glucagon like peptide-1 by a recombinant Lactococcus lactis. Pharm. Res. 31, 3404–3414 (2014).

    Article  PubMed  CAS  Google Scholar 

  16. Anselmo, A. C., McHugh, K. J., Webster, J., Langer, R. & Jaklenec, A. Layer-by-layer encapsulation of probiotics for delivery to the microbiome. Adv. Mater. 28, 9486–9490 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  17. Duran-Lobato, M., Niu, Z. & Alonso, M. J. Oral delivery of biologics for precision medicine. Adv. Mater. 32, e1901935 (2020).

    Article  PubMed  Google Scholar 

  18. Oka, A. & Sartor, R. B. Microbial-based and microbial-targeted therapies for inflammatory bowel diseases. Dig. Dis. Sci. 65, 757–788 (2020).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  19. Toso, J. F. et al. Phase I study of the intravenous administration of attenuated Salmonella typhimurium to patients with metastatic melanoma. J. Clin. Oncol. 20, 142–152 (2002).

    Article  PubMed  Google Scholar 

  20. Fritz, S. E. et al. A phase I clinical study to evaluate safety of orally administered, genetically engineered Salmonella enterica serovar Typhimurium for canine osteosarcoma. Vet. Med. Sci. 2, 179–190 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  21. Cao, Z., Cheng, S., Wang, X., Pang, Y. & Liu, J. Camouflaging bacteria by wrapping with cell membranes. Nat. Commun. 10, 3452 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  22. Cao, Z., Lin, S. & Liu, J. Bacteria-based microdevices for the oral delivery of macromolecules. Pharmaceutics 13, 1610 (2021).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  23. Feng, P., Cao, Z., Wang, X., Li, J. & Liu, J. On-demand bacterial reactivation by restraining within a triggerable nanocoating. Adv. Mater. 32, e2002406 (2020).

    Article  PubMed  Google Scholar 

  24. Luo, H. et al. Chemical reaction-mediated covalent localization of bacteria. Nat. Commun. 13, 7808 (2022).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  25. Chowdhury, S. et al. Programmable bacteria induce durable tumor regression and systemic antitumor immunity. Nat. Med. 25, 1057–1063 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  26. Collins, J. H. & Young, E. M. Genetic engineering of host organisms for pharmaceutical synthesis. Curr. Opin. Biotechnol. 53, 191–200 (2018).

    Article  PubMed  CAS  Google Scholar 

  27. Danino, T. et al. Programmable probiotics for detection of cancer in urine. Sci. Transl. Med. 7, 289ra284 (2015).

    Article  Google Scholar 

  28. Hwang, I. Y. et al. Engineered probiotic Escherichia coli can eliminate and prevent Pseudomonas aeruginosa gut infection in animal models. Nat. Commun. 8, 15028 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  29. Hyun, J. et al. Engineered attenuated Salmonella typhimurium expressing neoantigen has anticancer effects. ACS Synth. Biol. 10, 2478–2487 (2021).

    Article  PubMed  CAS  Google Scholar 

  30. He, L. et al. Intestinal probiotics E. coli Nissle 1917 as a targeted vehicle for delivery of p53 and Tum-5 to solid tumors for cancer therapy. J. Biol. Eng. 13, 58 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  31. Geng, Z. et al. Aptamer-assisted tumor localization of bacteria for enhanced biotherapy. Nat. Commun. 12, 6584 (2021).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  32. Guo, H. et al. Integrating bacteria with a ternary combination of photosensitizers for monochromatic irradiation-mediated photoacoustic imaging-guided synergistic photothermal therapy. ACS Nano 17, 5059–5071 (2023).

    Article  PubMed  CAS  Google Scholar 

  33. Hou, W. et al. Decorating bacteria with a therapeutic nanocoating for synergistically enhanced biotherapy. Small 17, e2101810 (2021).

    Article  PubMed  Google Scholar 

  34. Pan, C. et al. Polymerization-mediated multifunctionalization of living cells for enhanced cell-based therapy. Adv. Mater. 33, e2007379 (2021).

    Article  PubMed  Google Scholar 

  35. Wang, L., Cao, Z., Zhang, M., Lin, S. & Liu, J. Spatiotemporally controllable distribution of combination therapeutics in solid tumors by dually modified bacteria. Adv. Mater. 34, e2106669 (2022).

    Article  PubMed  Google Scholar 

  36. Wang, X. et al. Bioinspired oral delivery of gut microbiota by self-coating with biofilms. Sci. Adv. 6, eabb1952 (2020).

  37. Wang, X. et al. Versatility of bacterial outer membrane vesicles in regulating intestinal homeostasis. Sci. Adv. 9, eade5079 (2023).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  38. Zhou, J. et al. Programmable probiotics modulate inflammation and gut microbiota for inflammatory bowel disease treatment after effective oral delivery. Nat. Commun. 13, 3432 (2022).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  39. Cao, Z., Wang, X., Pang, Y., Cheng, S. & Liu, J. Biointerfacial self-assembly generates lipid membrane coated bacteria for enhanced oral delivery and treatment. Nat. Commun. 10, 5783 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  40. Hu, C. M. et al. ‘Marker-of-self’ functionalization of nanoscale particles through a top-down cellular membrane coating approach. Nanoscale 5, 2664–2668 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  41. Chen, J. et al. Oncolytic adenovirus complexes coated with lipids and calcium phosphate for cancer gene therapy. ACS Nano 10, 11548–11560 (2016).

    Article  PubMed  CAS  Google Scholar 

  42. Hu, C. M. et al. Erythrocyte membrane-camouflaged polymeric nanoparticles as a biomimetic delivery platform. Proc. Natl Acad. Sci. USA 108, 10980–10985 (2011).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  43. Tsai, R. K., Rodriguez, P. L. & Discher, D. E. Self inhibition of phagocytosis: the affinity of ‘marker of self’ CD47 for SIRPα dictates potency of inhibition but only at low expression levels. Blood Cells Mol. Dis. 45, 67–74 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  44. Jiang, Q. et al. Red blood cell membrane-camouflaged melanin nanoparticles for enhanced photothermal therapy. Biomaterials 143, 29–45 (2017).

    Article  PubMed  CAS  Google Scholar 

  45. Rao, L. et al. Red blood cell membrane as a biomimetic nanocoating for prolonged circulation time and reduced accelerated blood clearance. Small 11, 6225–6236 (2015).

    Article  PubMed  CAS  Google Scholar 

  46. Romeis, E. et al. Genetic engineering of Treponema pallidum subsp. pallidum, the syphilis spirochete. PLoS Pathog. 17, e1009612 (2021).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  47. Riley, L. A. & Guss, A. M. Approaches to genetic tool development for rapid domestication of non-model microorganisms. Biotechnol. Biofuels 14, 30 (2021).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  48. Brito, I. L. Examining horizontal gene transfer in microbial communities. Nat. Rev. Microbiol. 19, 442–453 (2021).

    Article  PubMed  CAS  Google Scholar 

  49. Zhang, X., Goncalves, R. & Mosser, D. M. The isolation and characterization of murine macrophages. Curr. Protoc. Immunol. 83, 14.1.1–14.1.14 (2008).

    Article  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Key Research and Development Program of China (2021YFA0909400 to J.L.), the National Natural Science Foundation of China (32101218 to Z.C.), the Explorer Program of the Science and Technology Commission of Shanghai Municipality (21TS1400400 to J.L.), the Innovative Research Team of High-Level Local Universities in Shanghai (SHSMU-ZDCX20210900 to J.L.), the Foundation of National Infrastructures for Translational Medicine (Shanghai) (TMSK-2021-123 to J.L.), and the Two-hundred Talent (20181704 to J.L.).

Author information

Authors and Affiliations

Authors

Contributions

J.L. and Z.C. originated the methods of preparing LCB and CMCB. All authors wrote the manuscript and approved the contents of the protocol.

Corresponding author

Correspondence to Jinyao Liu.

Ethics declarations

Competing interests

J.L. and Z.C. are inventors on a filed provisional application China patent no. CN201911034435.7 (Surface modified bacteria, preparation method and application thereof), submitted by Shanghai Jiao Tong University School of Medicine Affiliated Renji Hospital that covers the potential therapeutic uses of coated bacteria for treating colitis and cancer.

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Protocols thanks Fu-Gen Wu and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Related links

Key references using this protocol

Cao, Z. et al. Nat. Commun. 10, 5783 (2019): https://doi.org/10.1038/s41467-019-13727-9

Geng, Z. et al. Sci. Adv. 9, eade0997 (2023): https://doi.org/10.1126/sciadv.ade0997

Cao, Z. et al. Nat. Commun. 10, 3452 (2019): https://doi.org/10.1038/s41467-019-11390-8

Lin, S. et al. Sci. Adv. 7, eabf0677 (2021): https://doi.org/10.1126/sciadv.abf0677

Wang, X. et al. Sci. Adv. 6, eabb1952 (2020): https://doi.org/10.1126/sciadv.abb1952

Supplementary information

Source data

Source Data Fig. 2

Statistical source data.

Source Data Fig. 3

Statistical source data.

Source Data Fig. 4

Statistical source data.

Source Data Fig. 5

Statistical source data.

Source Data Fig. 6

Statistical source data.

Source Data Fig. 6

Unprocessed western blot.

Source Data Fig. 7

Statistical source data.

Source Data Fig. 8

Statistical source data.

Source Data Fig. 9

Statistical source data.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cao, Z., Liu, J. Surface nanocoating of bacteria as a versatile platform to develop living therapeutics. Nat Protoc (2024). https://doi.org/10.1038/s41596-024-01019-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41596-024-01019-6

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing Microbiology

Sign up for the Nature Briefing: Microbiology newsletter — what matters in microbiology research, free to your inbox weekly.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing: Microbiology