Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Protocol
  • Published:

Build and operation of a custom 3D, multicolor, single-molecule localization microscope

Abstract

Single-molecule localization microscopy (SMLM) enables imaging scientists to visualize biological structures with unprecedented resolution. Particularly powerful implementations of SMLM are capable of three-dimensional, multicolor and high-throughput imaging and can yield key biological insights. However, widespread access to these technologies is limited, primarily by the cost of commercial options and complexity of de novo development of custom systems. Here we provide a comprehensive guide for interested researchers who wish to establish a high-end, custom-built SMLM setup in their laboratories. We detail the initial configuration and subsequent assembly of the SMLM, including the instructions for the alignment of all the optical pathways, the software and hardware integration, and the operation of the instrument. We describe the validation steps, including the preparation and imaging of test and biological samples with structures of well-defined geometries, and assist the user in troubleshooting and benchmarking the system’s performance. Additionally, we provide a walkthrough of the reconstruction of a super-resolved dataset from acquired raw images using the Super-resolution Microscopy Analysis Platform. Depending on the instrument configuration, the cost of the components is in the range US$95,000–180,000, similar to other open-source advanced SMLMs, and substantially lower than the cost of a commercial instrument. A builder with some experience of optical systems is expected to require 4–8 months from the start of the system construction to attain high-quality three-dimensional and multicolor biological images.

Key points

  • The authors describe the complete configuration and assembly of a custom-built single-molecule localization microscope, including optical alignment, software and hardware integration, validation steps and benchmarking of the system’s performance.

  • The microscope is optimized for ultra-stable three-dimensional imaging performance and multichannel functionalities, while remaining substantially less expensive than similar commercial systems.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: A full rendering of the EMBL-SMLM.
Fig. 2: Schematic of the optical and motion control aspects of the EMBL–SMLM.
Fig. 3: The µManager and htSMLM GUIs.
Fig. 4: The fully assembled inverted microscope body.
Fig. 5: The fully assembled multicolor, 3D imaging capable emission path.
Fig. 6: The fully assembled illumination paths showing the different optional modules.
Fig. 7: The fully assembled focus lock path.
Fig. 8: 3D calibration of the microscope based on fluorescent bead z-stacks.
Fig. 9: 2D imaging of the NPC.
Fig. 10: 3D imaging of the NPC.

Similar content being viewed by others

Data availability

All CAD parts and assemblies, mechanical drawings and electronic board files are available from the project repository: https://github.com/ries-lab/3DSMLM. All materials provided in the repository are licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License (CC-BY-NC-ND-4.0). The sequences of raw images that were localized and rendered to produce Figs. 9 and 10 can be provided on request.

Code availability

The user interface, FPGA firmware and modified µManager device adapters are available from the project repository (https://github.com/ries-lab/3DSMLM). All materials provided in the repository are licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License (CC-BY-NC-ND-4.0). The analysis software, SMAP which is used used throughout the Protocol, is available at https://github.com/jries/SMAP.

References

  1. Betzig, E. et al. Imaging intracellular fluorescent proteins at nanometer resolution. Science 313, 1642–1645 (2006).

    Article  CAS  PubMed  Google Scholar 

  2. Hess, S. T., Girirajan, T. P. K. & Mason, M. D. Ultra-high resolution imaging by fluorescence photoactivation localization microscopy. Biophys. J. 91, 4258–4272 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Rust, M. J., Bates, M. & Zhuang, X. Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM). Nat. Methods 3, 793–795 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Heilemann, M., Van De Linde, S., Mukherjee, A. & Sauer, M. Super-resolution imaging with small organic fluorophores. Angew. Chem. Int. Ed. Engl. 48, 6903–6908 (2009).

    Article  CAS  PubMed  Google Scholar 

  5. Jungmann, R. et al. Single-molecule kinetics and super-resolution microscopy by fluorescence imaging of transient binding on DNA origami. Nano Lett. 10, 4756–4761 (2010).

    Article  CAS  PubMed  Google Scholar 

  6. Martens, K. J. A. et al. Visualisation of dCas9 target search in vivo using an open-microscopy framework. Nat. Commun. 10, 3552 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  7. Auer, A. et al. Nanometer-scale multiplexed super-resolution imaging with an economic 3D-DNA-PAINT microscope. ChemPhysChem 19, 3024–3034 (2018).

    Article  CAS  PubMed  Google Scholar 

  8. Ma, H., Fu, R., Xu, J. & Liu, Y. A simple and cost-effective setup for super-resolution localization microscopy. Sci. Rep. 7, 1542 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  9. Diederich, B. et al. Nanoscopy on the chea(i)p. Preprint at bioRxiv https://doi.org/10.1101/2020.09.04.283085 (2020).

  10. Zehrer, A. C., Martin-Villalba, A., Diederich, B. & Ewers, H. An open-source, high resolution, automated fluorescence microscope. eLife 12, RP89826 (2023).

    Article  Google Scholar 

  11. Alsamsam, M. N., Kopūstas, A., Jurevičiūtė, M. & Tutkus, M. The miEye: bench-top super-resolution microscope with cost-effective equipment. HardwareX 12, e00368 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  12. Coelho, S. et al. Ultraprecise single-molecule localization microscopy enables in situ distance measurements in intact cells. Sci. Adv. 6, eaay8271 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Mau, A., Friedl, K., Leterrier, C., Bourg, N. & Lévêque-Fort, S. Fast widefield scan provides tunable and uniform illumination optimizing super-resolution microscopy on large fields. Nat. Commun. 12, 3077 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Stehr, F., Stein, J., Schueder, F., Schwille, P. & Jungmann, R. Flat-top TIRF illumination boosts DNA-PAINT imaging and quantification. Nat. Commun. 10, 1268 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  15. Khaw, I. et al. Flat-field illumination for quantitative fluorescence imaging. Opt. Express 26, 15276 (2018).

    Article  CAS  PubMed  Google Scholar 

  16. Niederauer, C., Seynen, M., Zomerdijk, J., Kamp, M. & Ganzinger, K. A. The K2: open-source simultaneous triple-color TIRF microscope for live-cell and single-molecule imaging. HardwareX 13, e00404 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  17. Jabermoradi, A., Yang, S., Gobes, M. I., Van Duynhoven, J. P. M. & Hohlbein, J. Enabling single-molecule localization microscopy in turbid food emulsions. Philos. Trans. R. Soc. A. 380, 20200164 (2022).

    Article  CAS  Google Scholar 

  18. Li, Y. et al. Global fitting for high-accuracy multi-channel single-molecule localization. Nat. Commun. 13, 3133 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Roy, R., Hohng, S. & Ha, T. A practical guide to single-molecule FRET. Nat. Methods 5, 507–516 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Ha, T. et al. Probing the interaction between two single molecules: fluorescence resonance energy transfer between a single donor and a single acceptor. Proc. Natl Acad. Sci. USA 93, 6264–6268 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Huang, B., Wang, W., Bates, M. & Zhuang, X. Three-dimensional super-resolution imaging by stochastic optical reconstruction microscopy. Science 319, 810–813 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Pavani, S. R. P. et al. Three-dimensional, single-molecule fluorescence imaging beyond the diffraction limit by using a double-helix point spread function. Proc. Natl Acad. Sci. USA 106, 2995–2999 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Danial, J. S. H. et al. Constructing a cost-efficient, high-throughput and high-quality single-molecule localization microscope for super-resolution imaging. Nat. Protoc. 17, 2570–2619 (2022).

    Article  CAS  PubMed  Google Scholar 

  24. Carter, N., Cross, R. & Martin, D. Warwick open-source microscope. https://wosmic.org/ (2016).

  25. Edwards, J., Whitley, K., Peneti, S., Cesbron, Y. & Holden, S. LifeHack microscope. GitHub https://github.com/HoldenLab/LifeHack (2021).

  26. Deschamps, J., Rowald, A. & Ries, J. Efficient homogeneous illumination and optical sectioning for quantitative single-molecule localization microscopy. Opt. Express 24, 28080 (2016).

    Article  CAS  PubMed  Google Scholar 

  27. Li, Y. et al. Real-time 3D single-molecule localization using experimental point spread functions. Nat. Methods 15, 367–369 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Deschamps, J. & Ries, J. EMU: reconfigurable graphical user interfaces for Micro-Manager. BMC Bioinforma. 21, 456 (2020).

    Article  Google Scholar 

  29. Diekmann, R. et al. Optimizing imaging speed and excitation intensity for single-molecule localization microscopy. Nat. Methods 17, 909–912 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Ries, J. SMAP: a modular super-resolution microscopy analysis platform for SMLM data. Nat. Methods 17, 870–872 (2020).

    Article  CAS  PubMed  Google Scholar 

  31. Dasgupta, A. et al. Direct supercritical angle localization microscopy for nanometer 3D superresolution. Nat. Commun. 12, 1180 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Diekmann, R. et al. Photon-free (s)CMOS camera characterization for artifact reduction in high- and super-resolution microscopy. Nat. Commun. 13, 3362 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Ries, J., Kaplan, C., Platonova, E., Eghlidi, H. & Ewers, H. A simple, versatile method for GFP-based super-resolution microscopy via nanobodies. Nat. Methods 9, 582–584 (2012).

    Article  CAS  PubMed  Google Scholar 

  34. Mund, M. et al. Systematic nanoscale analysis of endocytosis links efficient vesicle formation to patterned actin nucleation. Cell 174, 884–896.e17 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Mund, M. et al. Clathrin coats partially preassemble and subsequently bend during endocytosis. J. Cell Biol. 222, e202206038 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Cieslinski, K. et al. Nanoscale structural organization and stoichiometry of the budding yeast kinetochore. J. Cell Biol. 222, e202209094 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Edelstein, A., Amodaj, N., Hoover, K., Vale, R. & Stuurman, N. Computer control of microscopes using manager. Curr. Protoc. Mol. Biol. https://doi.org/10.1002/0471142727.mb1420s92 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  38. Deschamps, J., Kieser, C., Hoess, P., Deguchi, T. & Ries, J. MicroFPGA: an affordable FPGA platform for microscope control. HardwareX 13, e00407 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  39. Schermelleh, L. et al. Super-resolution microscopy demystified. Nat. Cell Biol. 21, 72–84 (2019).

    Article  CAS  PubMed  Google Scholar 

  40. Vangindertael, J. et al. An introduction to optical super-resolution microscopy for the adventurous biologist. Methods Appl. Fluoresc. 6, 22003 (2018).

    Article  CAS  Google Scholar 

  41. Jacquemet, G., Carisey, A. F., Hamidi, H., Henriques, R. & Leterrier, C. The cell biologist’s guide to super-resolution microscopy. J. Cell Sci. 133, jcs240713 (2020).

    Article  CAS  PubMed  Google Scholar 

  42. Bond, C., Santiago-Ruiz, A. N., Tang, Q. & Lakadamyali, M. Technological advances in super-resolution microscopy to study cellular processes. Mol. Cell 82, 315–332 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Hell, S. W. & Wichmann, J. Breaking the diffraction resolution limit by stimulated emission. Opt. Lett. 19, 780–782 (1994).

    Article  CAS  PubMed  Google Scholar 

  44. Gustafsson, M. G. Surpassing the lateral resolution limit by a factor of two using structured illumination microscopy. J. Microsc. 198, 82–87 (2000).

    Article  CAS  PubMed  Google Scholar 

  45. Müller, C. B. & Enderlein, J. Image scanning microscopy. Phys. Rev. Lett. 104, 1–4 (2010).

    Article  Google Scholar 

  46. Strauss, M. T. Picasso-server: a community-based, open-source processing framework for super-resolution data. Commun. Biol. 5, 1–3 (2022).

    Article  Google Scholar 

  47. Ovesný, M., Křížek, P., Borkovec, J., Švindrych, Z. & Hagen, G. M. ThunderSTORM: a comprehensive ImageJ plug-in for PALM and STORM data analysis and super-resolution imaging. Bioinformatics 30, 2389–2390 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  48. Sage, D. et al. Super-resolution fight club: assessment of 2D and 3D single-molecule localization microscopy software. Nat. Methods 16, 387–395 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Von Appen, A. et al. In situ structural analysis of the human nuclear pore complex. Nature 526, 140–143 (2015).

    Article  Google Scholar 

  50. Thevathasan, J. V. et al. Nuclear pores as versatile reference standards for quantitative superresolution microscopy. Nat. Methods 16, 1045–1053 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Smith, C. S., Joseph, N., Rieger, B. & Lidke, K. A. Fast, single-molecule localization that achieves theoretically minimum uncertainty. Nat. Methods 7, 373–375 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Wu, Y.-L. et al. Maximum-likelihood model fitting for quantitative analysis of SMLM data. Nat. Methods 20, 139–148 (2023).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank C. Kieser (EMBL Electronic Workshop) for help with construction of and documentation for the microFPGA. We thank A. Milberger (EMBL Mechanical Workshop) for providing all mechanical drawings. We thank J. Deschamps (Human Technopole, Milan, Italy) for providing the EMU htSMLM user interface and continued support in various aspects of microscope control. We thank A. Roy for assistance in testing the protocol. This work was supported by the European Research Council (CoG-724489) and the European Molecular Biology Laboratory. We acknowledge the access and services provided by the Imaging Centre at the European Molecular Biology Laboratory, generously supported by the Boehringer Ingelheim Foundation.

Author information

Authors and Affiliations

Authors

Contributions

R.M.P. and J.R. designed and developed the microscope hardware. A.T. and J.R. performed sample preparation. R.M.P., A.T. and J.R. performed imaging and data analysis. T.Z. and J.R. provided project supervision. All authors wrote the manuscript and designed the protocol.

Corresponding authors

Correspondence to Rory M. Power or Jonas Ries.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Protocols thanks Carlas Smith and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Related links

Key references

Li, Y. et al. Nat. Methods 15, 367–369 (2018): https://doi.org/10.1038/nmeth.4661

Diekmann, R. et al. Nat. Methods 17, 909–912 (2020): https://doi.org/10.1038/s41592-020-0918-5

Deschamps, J. et al. HardwareX 13, e00407 (2023): https://doi.org/10.1016/j.ohx.2023.e00407

Thevathasan, J. V. et al. Nat. Methods 16, 1045–1053 (2019): https://doi.org/10.1038/s41592-019-0574-9

Wu, Y.-L. et al. Nat. Methods 20, 139–148 (2023): https://doi.org/10.1038/s41592-022-01676-z

Extended data

Supplementary Information

Supplementary Information

Supplementary Notes 1–26, Protocols 1–8, Troubleshooting, Figs. 1–67 and References.

Reporting Summary

Supplementary Tables

Supplementary Tables 1–13.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Power, R.M., Tschanz, A., Zimmermann, T. et al. Build and operation of a custom 3D, multicolor, single-molecule localization microscope. Nat Protoc (2024). https://doi.org/10.1038/s41596-024-00989-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41596-024-00989-x

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing