Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Protocol
  • Published:

TAC–TIC, a high-throughput genetics method to identify triggers or blockers of bacterial toxin–antitoxin systems

Abstract

Toxin–antitoxin systems (TAs) are abundant in bacterial chromosomes and can arrest growth under stress, but usually remain inactive. TAs have been increasingly implicated in halting the growth of infected bacteria from bacteriophages or foreign genetic elements1,2 to protect the population (abortive infection, Abi). The vast diversity and abundance of TAs and other Abi systems3 suggest they play an important immunity role, yet what allows them to sense attack remains largely enigmatic. Here, we describe a method called toxin activation–inhibition conjugation (TAC–TIC), which we used to identify gene products that trigger or block the toxicity of phage-defending tripartite retron-TAs4. TAC–TIC employs high-density arrayed mobilizable gene-overexpression libraries, which are transferred into cells carrying the full TA system or only its toxic component, on inducible vectors. The double-plasmid transconjugants are then pinned on inducer-containing agar plates and their colony fitness is quantified to identify gene products that trigger a TA to inhibit growth (TAC), or that block it from acting (TIC). TAC–TIC is optimized for the Singer ROTOR pinning robot, but can also be used with other robots or manual pinners, and allows screening tens of thousands of genes against any TA or Abi (with toxicity) within a week. Finally, we present a dual conjugation donor/cloning strain (Escherichia coli DATC), which accelerates the construction of TAC–TIC gene-donor libraries from phages, enabling the use of TAC–TIC for identifying TA triggers and antidefense mechanisms in phage genomes.

Key points

  • TAC–TIC employs gene-overexpression plasmid libraries conjugated into E. coli strains carrying the full toxin–antitoxin or phage defense system or only its toxin/effector. Colony fitness of double-plasmid transconjugants is quantified to reveal genes that trigger the system to inhibit growth or block its toxin from acting.

  • TAC–TIC can identify all potential phage genes that trigger/block a defense system, while phage escapee studies identify the strongest genetic elements.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Principle of toxin activation–inhibition conjugation (TAC–TIC).
Fig. 2: TAC–TIC overview.
Fig. 3: TAC–TIC data example.

Similar content being viewed by others

Data availability

Data shown in Fig. 3 are reprinted with permission from ref. 4.

Code availability

Code used to analyze TAC–TIC data in ref. 4 can be found at https://git.embl.de/kritikos/tic-tac.

References

  1. Song, S. & Wood, T. K. A primary physiological role of toxin/antitoxin systems is phage inhibition. Front. Microbiol. 11, 1895 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  2. LeRoux, M. & Laub, M. T. Toxin–antitoxin systems as phage defense elements. Annu. Rev. Microbiol. 76, 21–43 (2022).

    Article  CAS  PubMed  Google Scholar 

  3. Tal, N. & Sorek, R. SnapShot: bacterial immunity. Cell 185, 578–578.e1 (2022).

    Article  CAS  PubMed  Google Scholar 

  4. Bobonis, J. et al. Bacterial retrons encode phage-defending tripartite toxin–antitoxin systems. Nature 609, 144–150 (2022).

    Article  CAS  PubMed  Google Scholar 

  5. Harms, A., Brodersen, D. E., Mitarai, N. & Gerdes, K. Toxins, targets, and triggers: an overview of toxin–antitoxin biology. Mol. Cell 70, 768–784 (2018).

    Article  CAS  PubMed  Google Scholar 

  6. Fraikin, N., Goormaghtigh, F. & Van Melderen, L. Type II toxin–antitoxin systems: evolution and revolutions. J. Bacteriol. 202, e00763–19 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Fineran, P. C. et al. The phage abortive infection system, ToxIN, functions as a protein–RNA toxin–antitoxin pair. Proc. Natl Acad. Sci. USA 106, 894–899 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Otsuka, Y. & Yonesaki, T. Dmd of bacteriophage T4 functions as an antitoxin against Escherichia coli LsoA and RnlA toxins. Mol. Microbiol. 83, 669–681 (2012).

    Article  CAS  PubMed  Google Scholar 

  9. Sberro, H. et al. Discovery of functional toxin/antitoxin systems in bacteria by shotgun cloning. Mol. Cell 50, 136–148 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Lopatina, A., Tal, N. & Sorek, R. Abortive infection: bacterial suicide as an antiviral immune strategy. Annu. Rev. Virol. 7, 371–384 (2020).

    Article  CAS  PubMed  Google Scholar 

  11. Vassallo, C. N., Doering, C. R., Littlehale, M. L., Teodoro, G. I. C. & Laub, M. T. A functional selection reveals previously undetected anti-phage defence systems in the E. coli pangenome. Nat. Microbiol. 7, 1568–1579 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Millman, A. et al. An expanded arsenal of immune systems that protect bacteria from phages. Cell Host Microbe 30, 1556–1569.e5 (2022).

    Article  CAS  PubMed  Google Scholar 

  13. Jaskólska, M., Adams, D. W. & Blokesch, M. Two defence systems eliminate plasmids from seventh pandemic Vibrio cholerae. Nature 604, 323–329 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  14. Millman, A. et al. Bacterial retrons function in anti-phage defense. Cell 183, 1551–1561.e12 (2020).

    Article  CAS  PubMed  Google Scholar 

  15. Gao, L. et al. Diverse enzymatic activities mediate antiviral immunity in prokaryotes. Science 369, 1077–1084 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Samson, J. E., Magadán, A. H., Sabri, M. & Moineau, S. Revenge of the phages: defeating bacterial defences. Nat. Rev. Microbiol. 11, 675–687 (2013).

    Article  CAS  PubMed  Google Scholar 

  17. Jurėnas, D., Fraikin, N., Goormaghtigh, F. & Van Melderen, L. Biology and evolution of bacterial toxin–antitoxin systems. Nat. Rev. Microbiol. 20, 335–350 (2022).

    Article  PubMed  Google Scholar 

  18. Schubert, M. G. et al. High-throughput functional variant screens via in vivo production of single-stranded DNA. Proc. Natl Acad. Sci. USA 118, 1–10 (2021).

    Article  Google Scholar 

  19. Farzadfard, F., Gharaei, N., Citorik, R. J. & Lu, T. K. Efficient retroelement-mediated DNA writing in bacteria. Cell Syst. 12, 860–872.e5 (2021).

    Article  CAS  PubMed  Google Scholar 

  20. Lopez, S. C., Crawford, K. D., Lear, S. K., Bhattarai-Kline, S. & Shipman, S. L. Precise genome editing across kingdoms of life using retron-derived DNA. Nat. Chem. Biol. 18, 199–206 (2022).

    Article  CAS  PubMed  Google Scholar 

  21. Mestre, M. R., González-Delgado, A., Gutiérrez-Rus, L. I., Martínez-Abarca, F. & Toro, N. Systematic prediction of genes functionally associated with bacterial retrons and classification of the encoded tripartite systems. Nucleic Acids Res. 48, 12632–12647 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Saka, K. A complete set of escherichia coli open reading frames in mobile plasmids facilitating genetic studies. DNA Res. 12, 63–68 (2005).

    Article  CAS  PubMed  Google Scholar 

  23. Otsuka, Y. et al. GenoBase: Comprehensive resource database of Escherichia coli K-12. Nucleic Acids Res. 43, D606–D617 (2015).

    Article  CAS  PubMed  Google Scholar 

  24. Depardieu, F. et al. A eukaryotic-like serine/threonine kinase protects Staphylococci against phages. Cell Host Microbe 20, 471–481 (2016).

    Article  CAS  PubMed  Google Scholar 

  25. Snyder, L. & McWilliams, K. The rex genes of bacteriophage lambda can inhibit cell function without phage superinfection. Gene 81, 17–24 (1989).

    Article  CAS  PubMed  Google Scholar 

  26. Meeske, A. J., Nakandakari-Higa, S. & Marraffini, L. A. Cas13-induced cellular dormancy prevents the rise of CRISPR-resistant bacteriophage. Nature 570, 241–245 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Stokar-Avihail, A. et al. Discovery of phage determinants that confer sensitivity to bacterial immune systems. Cell 186, 1863–1876.e16 (2023).

    Article  CAS  PubMed  Google Scholar 

  28. Zhang, T. et al. Direct activation of a bacterial innate immune system by a viral capsid protein. Nature 612, 132–140 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Maier, L. et al. Extensive impact of non-antibiotic drugs on human gut bacteria. Nature 555, 623–628 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Paradis-Bleau, C., Kritikos, G., Orlova, K., Typas, A. & Bernhardt, T. G. A genome-wide screen for bacterial envelope biogenesis mutants identifies a novel factor involved in cell wall precursor metabolism. PLoS Genet. 10, e1004056 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  31. Gao, L. A. et al. Prokaryotic innate immunity through pattern recognition of conserved viral proteins. Science 377, eabm4096 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Amitsur, M., Levitz, R. & Kaufmann, G. Bacteriophage T4 anticodon nuclease, polynucleotide kinase and RNA ligase reprocess the host lysine tRNA. EMBO J. 6, 2499–2503 (1987).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Ferrières, L. et al. Silent mischief: bacteriophage Mu insertions contaminate products of Escherichia coli random mutagenesis performed using suicidal transposon delivery plasmids mobilized by broad-host-range RP4 conjugative machinery. J. Bacteriol. 192, 6418–6427 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  34. Simon, R., Priefer, U. & Pühler, A. A broad host range mobilization system for in vivo genetic engineering: transposon mutagenesis in Gram negative bacteria. Nat. Biotechnol. 1, 784–791 (1983).

    Article  CAS  Google Scholar 

  35. Thomason, L. C., Costantino, N. & Court, D. L. E. coli genome manipulation by P1 transduction. Curr. Protoc. Mol. Biol. 79, 1–8 (2007).

    Article  Google Scholar 

  36. Sharan, S. K., Thomason, L. C., Kuznetsov, S. G. & Court, D. L. Recombineering: a homologous recombination-based method of genetic engineering. Nat. Protoc. 4, 206–223 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Shiver, A. L., Culver, R., Deutschbauer, A. M. & Huang, K. C. Rapid ordering of barcoded transposon insertion libraries of anaerobic bacteria. Nat. Protoc. 16, 3049–3071 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Engler, C., Kandzia, R. & Marillonnet, S. A one pot, one step, precision cloning method with high throughput capability. PLoS ONE 3, e3647 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  39. Yong, H. T. et al. Development of a system for discovery of genetic interactions for essential genes in Escherichia coli K-12. Genes Genet. Syst. 88, 233–240 (2013).

    Article  CAS  PubMed  Google Scholar 

  40. Babic, A., Guérout, A.-M. & Mazel, D. Construction of an improved RP4 (RK2)-based conjugative system. Res. Microbiol. 159, 545–549 (2008).

    Article  CAS  PubMed  Google Scholar 

  41. Haase, J., Lurz, R., Grahn, A. M., Bamford, D. H. & Lanka, E. Bacterial conjugation mediated by plasmid RP4: RSF1010 mobilization, donor-specific phage propagation, and pilus production require the same Tra2 core components of a proposed DNA transport complex. J. Bacteriol. 177, 4779–4791 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Jahn, M., Vorpahl, C., Hübschmann, T., Harms, H. & Müller, S. Copy number variability of expression plasmids determined by cell sorting and droplet digital PCR. Microb. Cell Fact. 15, 211 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  43. Guzman, L. M., Belin, D., Carson, M. J. & Beckwith, J. Tight regulation, modulation, and high-level expression by vectors containing the arabinose P(BAD) promoter. J. Bacteriol. 177, 4121–4130 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Baba, T. et al. Construction of Escherichia coli K-12 in-frame, single-gene knockout mutants: the Keio collection. Mol. Syst. Biol. 2, 2006:2–2006.0008 (2006).

  45. Kritikos, G. et al. A tool named Iris for versatile high-throughput phenotyping in microorganisms. Nat. Microbiol. 2, 17014 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Chung, C. T., Niemela, S. L. & Miller, R. H. One-step preparation of competent Escherichia coli: transformation and storage of bacterial cells in the same solution. Proc. Natl Acad. Sci. USA 86, 2172–2175 (1989).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Doherty, H. M., Kritikos, G., Galardini, M., Banzhaf, M. & Moradigaravand, D. ChemGAPP: a tool for chemical genomics analysis and phenotypic profiling. Bioinformatics 39, 2023.01.05.522861 (2023).

    Article  Google Scholar 

Download references

Acknowledgements

We thank the Typas laboratory for discussions and for advice when first establishing the automated steps of this protocol, especially M. Wartel and A. Koumoutsi. This work was funded by EMBL.

Author information

Authors and Affiliations

Authors

Contributions

J.B. and A.T. conceived the TAC–TIC protocol, J.B., A.L.J.Y. and C.G.P.V. optimized the protocol for constructing gene–donor phage libraries, A.L.J.Y. performed experiments for Supplementary Fig. 1a,b, J.B. designed figures with comments from all authors. J.B. and A.L.J.Y. wrote the manuscript, with extensive comments and edits from C.G.P.V. and A.T.

Corresponding author

Correspondence to Athanasios Typas.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Protocols thanks Kenn Gerdes and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Related links

Key reference using this protocol

Bobonis, J. et al. Nature 609, 144–150 (2022): https://doi.org/10.1038/s41586-022-05091-4

Extended data

Supplementary information

Supplementary Information

Supplementary Methods, Table 1 and Figs. 1 and 2.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bobonis, J., Yang, A.L.J., Voogdt, C.G.P. et al. TAC–TIC, a high-throughput genetics method to identify triggers or blockers of bacterial toxin–antitoxin systems. Nat Protoc (2024). https://doi.org/10.1038/s41596-024-00988-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41596-024-00988-y

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing Microbiology

Sign up for the Nature Briefing: Microbiology newsletter — what matters in microbiology research, free to your inbox weekly.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing: Microbiology