Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Protocol
  • Published:

An optimized culture system for efficient derivation of porcine expanded potential stem cells from preimplantation embryos and by reprogramming somatic cells

Abstract

Pigs share anatomical and physiological traits with humans and can serve as a large-animal model for translational medicine. Bona fide porcine pluripotent stem cells (PSCs) could facilitate testing cell and drug therapies. Agriculture and biotechnology may benefit from the ability to produce immune cells for studying animal infectious diseases and to readily edit the porcine genome in stem cells. Isolating porcine PSCs from preimplantation embryos has been intensively attempted over the past decades. We previously reported the derivation of expanded potential stem cells (EPSCs) from preimplantation embryos and by reprogramming somatic cells of multiple mammalian species, including pigs. Porcine EPSCs (pEPSCs) self-renew indefinitely, differentiate into embryonic and extra-embryonic lineages, and permit precision genome editing. Here we present a highly reproducible experimental procedure and data of an optimized and robust porcine EPSC culture system and its use in deriving new pEPSC lines from preimplantation embryos and reprogrammed somatic cells. No particular expertise is required for the protocols, which take ~4–6 weeks to complete. Importantly, we successfully established pEPSC lines from both in vitro fertilized and somatic cell nuclear transfer-derived embryos. These new pEPSC lines proliferated robustly over long-term passaging and were amenable to both simple indels and precision genome editing, with up to 100% targeting efficiency. The pEPSCs differentiated into embryonic cell lineages in vitro and teratomas in vivo, and into porcine trophoblast stem cells in human trophoblast stem cell medium. We show here that pEPSCs have unique epigenetic features, particularly H3K27me3 levels substantially lower than fibroblasts.

Key points

  • This protocol describes an optimized culture system for the derivation of porcine expanded potential stem cells (pEPSCs) from preimplantation embryos and reprogrammed somatic cells, including procedures for validation assays and gene targeting approaches.

  • This optimized culture system is more robust than previous methods for pEPSC derivation and enables generation of pEPSC lines from preimplantation embryos derived by in vitro fertilization and somatic cell nuclear transfer.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Schematic diagrams describing the steps for the workflow of the protocol.
Fig. 2: The procedure for establishing pEPSC lines from porcine preimplantation embryos.
Fig. 3: The requirements of pEPSCM components in pEPSC derivation and maintenance.
Fig. 4: The development of opEPSCM.
Fig. 5: A schematic diagram of pEPSC derivation from porcine IVF and SCNT preimplantation embryos in opEPSCM.
Fig. 6: Characterization of opEPSCM-cultured pEPSCs derived from porcine preimplantation embryos.
Fig. 7: Reprogramming PFFs to pEPSCs.
Fig. 8: pEPSC’s epigenetic profiles and the developmental potential to trophoblasts.
Fig. 9: Genome editing in pEPSCs cultured in opEPSCM.
Fig. 10: SNL76/7 feeder preparation and single-colony picking and validation.

Similar content being viewed by others

Data availability

Supporting data of this study can be found in our previous publications4,36. All source data generated or analyzed during this study are included in this published article and its supplementary files. Source data are provided with this paper.

References

  1. Lunney, J. K. et al. Importance of the pig as a human biomedical model. Sci. Transl. Med. 13, eabd5758 (2021).

    Article  CAS  PubMed  Google Scholar 

  2. Hinrichs, A. et al. Growth hormone receptor knockout to reduce the size of donor pigs for preclinical xenotransplantation studies. Xenotransplantation 28, e12664 (2021).

    Article  PubMed  Google Scholar 

  3. Reichart, B. et al. Pig-to-non-human primate heart transplantation: the final step toward clinical xenotransplantation? J. Heart Lung Transplant. 39, 751–757 (2020).

    Article  PubMed  Google Scholar 

  4. Gao, X. et al. Establishment of porcine and human expanded potential stem cells. Nat. Cell Biol. 21, 687–699 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Guo, G. et al. Naive pluripotent stem cells derived directly from isolated cells of the human inner cell mass. Stem Cell Rep. 6, 437–446 (2016).

    Article  CAS  Google Scholar 

  6. Khan, S. A. et al. Probing the signaling requirements for naive human pluripotency by high-throughput chemical screening. Cell Rep. 35, 109233 (2021).

    Article  MathSciNet  CAS  PubMed  PubMed Central  Google Scholar 

  7. Takashima, Y. et al. Resetting transcription factor control circuitry toward ground-state pluripotency in human. Cell 158, 1254–1269 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Theunissen, T. W. et al. Systematic identification of culture conditions for induction and maintenance of naive human pluripotency. Cell Stem Cell 15, 471–487 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Yang, J. et al. Establishment of mouse expanded potential stem cells. Nature 550, 393–397 (2017).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  10. Kinoshita, M. et al. Pluripotent stem cells related to embryonic disc exhibit common self-renewal requirements in diverse livestock species. Development https://doi.org/10.1242/dev.199901 (2021).

  11. Zhi, M. et al. Generation and characterization of stable pig pregastrulation epiblast stem cell lines. Cell Res. 32, 383–400 (2022).

    Article  ADS  CAS  PubMed  Google Scholar 

  12. Meek, S. et al. Stem cell-derived porcine macrophages as a new platform for studying host-pathogen interactions. BMC Biol. 20, 14 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Zhao, L. et al. Establishment of bovine expanded potential stem cells. Proc. Natl Acad. Sci. USA 118, e2018505118 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Brevini, T. A. et al. Culture conditions and signalling networks promoting the establishment of cell lines from parthenogenetic and biparental pig embryos. Stem Cell Rev. Rep. 6, 484–495 (2010).

    Article  CAS  PubMed  Google Scholar 

  15. Ezashi, T., Yuan, Y. & Roberts, R. M. Pluripotent stem cells from domesticated mammals. Annu. Rev. Anim. Biosci. 4, 223–253 (2016).

    Article  CAS  PubMed  Google Scholar 

  16. Haraguchi, S., Kikuchi, K., Nakai, M. & Tokunaga, T. Establishment of self-renewing porcine embryonic stem cell-like cells by signal inhibition. J. Reprod. Dev. 58, 707–716 (2012).

    Article  CAS  PubMed  Google Scholar 

  17. Hou, D. R. et al. Derivation of porcine embryonic stem-like cells from in vitro-produced blastocyst-stage embryos. Sci. Rep. 6, 25838 (2016).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  18. Kues, W. A. et al. Derivation and characterization of sleeping beauty transposon-mediated porcine induced pluripotent stem cells. Stem Cells Dev. 22, 124–135 (2013).

    Article  CAS  PubMed  Google Scholar 

  19. Ma, Y., Yu, T., Cai, Y. & Wang, H. Preserving self-renewal of porcine pluripotent stem cells in serum-free 3i culture condition and independent of LIF and b-FGF cytokines. Cell Death Discov. 4, 21 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  20. Park, J. K. et al. Primed pluripotent cell lines derived from various embryonic origins and somatic cells in pig. PLoS ONE 8, e52481 (2013).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  21. Petkov, S., Hyttel, P. & Niemann, H. The small molecule inhibitors PD0325091 and CHIR99021 reduce expression of pluripotency-related genes in putative porcine induced pluripotent stem cells. Cell Reprogram. 16, 235–240 (2014).

    Article  CAS  PubMed  Google Scholar 

  22. Petkov, S., Glage, S., Nowak-Imialek, M. & Niemann, H. Long-term culture of porcine induced pluripotent stem-like cells under feeder-free conditions in the presence of histone deacetylase inhibitors. Stem Cells Dev. 25, 386–394 (2016).

    Article  CAS  PubMed  Google Scholar 

  23. Vassiliev, I. et al. In vitro and in vivo characterization of putative porcine embryonic stem cells. Cell Reprogram. 12, 223–230 (2010).

    Article  CAS  PubMed  Google Scholar 

  24. Xue, B. et al. Porcine pluripotent stem cells derived from IVF embryos contribute to chimeric development in vivo. PLoS ONE 11, e0151737 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  25. Huang, S.-M. A. et al. Tankyrase inhibition stabilizes axin and antagonizes Wnt signalling. Nature 461, 614–620 (2009).

    Article  ADS  CAS  PubMed  Google Scholar 

  26. Yang, J., Ryan, D. J., Lan, G., Zou, X. & Liu, P. In vitro establishment of expanded-potential stem cells from mouse pre-implantation embryos or embryonic stem cells. Nat. Protoc. 14, 350–378 (2019).

    Article  CAS  PubMed  Google Scholar 

  27. Wilkinson, A. C. et al. Expanded potential stem cell media as a tool to study human developmental hematopoiesis in vitro. Exp. Hematol. 76, 1–12. e15 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Bauer, B. K. et al. Transcriptional profiling by deep sequencing identifies differences in mRNA transcript abundance in in vivo-derived versus in vitro-cultured porcine blastocyst stage embryos. Biol. Reprod. 83, 791–798 (2010).

    Article  CAS  PubMed  Google Scholar 

  29. Macháty, Z., Day, B. N. & Prather, R. S. Development of early porcine embryos in vitro and in vivo. Biol. Reprod. 59, 451–455 (1998).

    Article  PubMed  Google Scholar 

  30. Pomar, F. J. et al. Differences in the incidence of apoptosis between in vivo and in vitro produced blastocysts of farm animal species: a comparative study. Theriogenology 63, 2254–2268 (2005).

    Article  CAS  PubMed  Google Scholar 

  31. Hao, Y. et al. Apoptosis and in vitro development of preimplantation porcine embryos derived in vitro or by nuclear transfer. Biol. Reprod. 69, 501–507 (2003).

    Article  CAS  PubMed  Google Scholar 

  32. Kim, S. et al. Establishment and characterization of embryonic stem-like cells from porcine somatic cell nuclear transfer blastocysts. Zygote 18, 93–101 (2010).

    Article  CAS  PubMed  Google Scholar 

  33. Siriboon, C. et al. Putative porcine embryonic stem cell lines derived from aggregated four-celled cloned embryos produced by oocyte bisection cloning. PLoS ONE 10, e0118165 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  34. Vassiliev, I. et al. Isolation and in vitro characterization of putative porcine embryonic stem cells from cloned embryos treated with trichostatin A. Cell Reprogram. 13, 205–213 (2011).

    Article  CAS  PubMed  Google Scholar 

  35. Lai, S. et al. Generation of knock-in pigs carrying Oct4-tdTomato reporter through CRISPR/Cas9-mediated genome engineering. PLoS ONE 11, e0146562 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  36. Gao, X., Ruan, D. & Liu, P. Reprogramming porcine fibroblast to EPSCs. Methods Mol. Biol. 2239, 199–211 (2021).

    Article  CAS  PubMed  Google Scholar 

  37. Marinho, L. S. R., Rissi, V. B., Lindquist, A. G., Seneda, M. M. & Bordignon, V. Acetylation and methylation profiles of H3K27 in porcine embryos cultured in vitro. Zygote 25, 575–582 (2017).

    Article  CAS  PubMed  Google Scholar 

  38. Park, K. E., Magnani, L. & Cabot, R. A. Differential remodeling of mono- and trimethylated H3K27 during porcine embryo development. Mol. Reprod. Dev. 76, 1033–1042 (2009).

    Article  CAS  PubMed  Google Scholar 

  39. Xu, S., Wang, S., Tam, T., Liu, P. & Ruan, D. Derivation of trophoblast stem cells from human expanded potential stem cells. STAR Protoc. 4, 102354 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Liu, S. et al. Sox2 is the faithful marker for pluripotency in pig: evidence from embryonic studies. Dev. Dyn. 244, 619–627 (2015).

    Article  CAS  PubMed  Google Scholar 

  41. Hölker, M. Duration of in vitro maturation of recipient oocytes affects blastocyst development of cloned porcine embryos. Cloning Stem Cells 7, 35–44 (2005).

    Article  PubMed  Google Scholar 

  42. Nowak-Imialek, M. et al. Oct4-enhanced green fluorescent protein transgenic pigs: A new large animal model for reprogramming studies. Stem Cells Dev. 20, 1563–1575 (2011).

    Article  CAS  PubMed  Google Scholar 

  43. Nowak-Imialek, M. et al. In vitro and in vivo interspecies chimera assay using early pig embryos. Cell Reprogram. 22, 118–133 (2020).

    Article  CAS  PubMed  Google Scholar 

  44. Nowak-Imialek, M. & Niemann, H. in Cell and Molecular Biology and Imaging of Stem Cells (ed. Schatten, H.) Ch. 5, 137–152 (Wiley-Blackwell, 2014).

  45. McMahon, A. P. & Bradley, A. The Wnt-1 (int-1) proto-oncogene is required for development of a large region of the mouse brain. Cell 62, 1073–1085 (1990).

    Article  CAS  PubMed  Google Scholar 

  46. Okae, H. et al. Derivation of human trophoblast stem cells. Cell Stem Cell 22, 50–63 e56 (2018).

    Article  CAS  PubMed  Google Scholar 

  47. Ruan, D. et al. Human early syncytiotrophoblasts are highly susceptible to SARS-CoV-2 infection. Cell Rep. Med. 3, 100849 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Kong, Q. et al. Lineage specification and pluripotency revealed by transcriptome analysis from oocyte to blastocyst in pig. FASEB J. 34, 691–705 (2020).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This project is supported by the National Key Research and Development Program of China (nos. 2022YFA1105401, 2022YFA1105400, 2018YFA0902702); Health@InnoHK, Innovation Technology Commission; HKSAR, Hong Kong Research Council (GRF17127219 and GRF17126421, Germany/Hong Kong travel grant G-HKU704/21); National Natural Science Foundation of China/RGC Collaborative Research Scheme (CRS_HKU703); National Natural Science Foundation of China (nos. 81570202 and 32070869); High Level-Hospital Program, Health Commission of Guangdong Province, China (no. HKUSZH201902025). Work in Germany was financially supported by Deutsche Forschungsgemeinschaft within the research network Regenerative Biology to Reconstructive Therapy. We are grateful to the team involved in IVF embryo production and SCNT, A. Lucas-Hahn, P. Hassel, R. Becker and M. Ziegler.

Author information

Authors and Affiliations

Authors

Contributions

P.L., D.R. and M.N.-I. conceived the project and drafted the protocol. M.N.-I. contributed to the generation of porcine OCT4–eGFP blastocysts and performed the establishment of porcine pEPSCs from preimplantation embryos. M.N.-I. and D.H. performed testing of different pEPSCM conditions and IF staining of pEPSC outgrowths derived from porcine embryos. D.R., X.G. and Y.X. performed the establishment of pEPSCs from PFFs and the generation of pCD31 and pSOX2 reporter cell lines. D.R., X.G. and X.W. contributed to the generation of pTSCs. Y.X. contributed to the teratoma formation, karyotyping, pEPSCs electrotransfection and GGTA1 knockout assays. D.R., S.X. and Y.X. performed RT–qPCR analysis of gene expression levels, IF staining and FACS assays. P.L., H.N., M.N.-I., X.G. and D.R. contributed to the writing and the critical revision of the manuscript. Z.L. performed scRNA sequencing analysis. T.T.K.K.T., S.X. and L.L. provided intellectual input. All authors read and approved the final manuscript.

Corresponding authors

Correspondence to Xuefei Gao, Monika Nowak-Imialek or Pentao Liu.

Ethics declarations

Competing interests

A patent application related to the data presented here is pending on behalf of Center for Translational Stem Cell Biology and the University of Hong Kong. The other authors declare no competing interests.

Peer review

Peer review information

Nature Protocols thanks Jianyong Hang and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Related links

Key references using this protocol

Krüger, L. et al. Virus Res. 294, 198295 (2021): https://doi.org/10.1016/j.virusres.2021.198295

Rawat, H. et al. Front. Cell Dev. Biol. 11, 1111684 (2023): https://doi.org/10.3389/fcell.2023.1111684

Key data used in this protocol

Gao, X. et al. Nat. Cell Biol. 21, 687–699 (2019): https://doi.org/10.1038/s41556-019-0333-2

Gao, X. et al. Methods Mol. Biol. 2239, 199–211 (2021): https://doi.org/10.1007/978-1-0716-1084-8_13

Meek, S. et al. BMC Biol. 20, 14 (2022): https://doi.org/10.1186/s12915-021-01217-8

Supplementary information

Supplementary Information

Supplementary Figs. 1 and 2 and Tables 1 and 2.

Supplementary Data

Unprocessed gels for Supplementary Fig. 2.

Source data

Source Data Fig. 2

Statistical source data for Fig. 2d.

Source Data Fig. 4

Statistical source data for Fig. 4d.

Source Data Fig. 7

Unprocessed gel for Fig. 7f.

Source Data Fig. 9

Unprocessed gel for Fig. 9d.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ruan, D., Xuan, Y., Tam, T.T.K.K. et al. An optimized culture system for efficient derivation of porcine expanded potential stem cells from preimplantation embryos and by reprogramming somatic cells. Nat Protoc (2024). https://doi.org/10.1038/s41596-024-00958-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41596-024-00958-4

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing