Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Protocol
  • Published:

Design and fabrication of wearable electronic textiles using twisted fiber-based threads

Abstract

Mono-dimensional fiber-based electronics can effectively address the growing demand for improved wearable electronic devices because of their exceptional flexibility and stretchability. For practical applications, functional fiber electronic devices need to be integrated into more powerful and versatile systems to execute complex tasks that cannot be completed by single-fiber devices. Existing techniques, such as printing and sintering, reduce the flexibility and cause low connection strength of fiber-based electronic devices because of the high curvature of the fiber. Here, we outline a twisting fabrication process for fiber electrodes, which can be woven into functional threads and integrated within textiles. The design of the twisted thread structure for fiber devices ensures stable interfacing and good flexibility, while the textile structure features easily accessible, interlaced points for efficient circuit connections. Electronic textiles can be customized to act as displays, health monitors and power sources. We detail three main fabrication sections, including the fabrication of the fiber electrodes, their twisting into electronic threads and their assembly into functional textile-based devices. The procedures require ~10 d and are easily reproducible by researchers with expertise in fabricating energy and electronic devices.

Key points

  • We provide a fabrication process to twist fiber electrodes into electronic threads that can be woven into large-scale electronic textiles. Electronic textiles can then be used for functions such as energy harvesting, energy storage, displays and other customizable functions desirable for wearable devices.

  • The twisting process facilitates the flexibility, stretchability, connectivity and breathability of the textile with threads that can incorporate fibers of varying sizes and properties.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Schematic illustration of electronic threads integrated into a textile system.
Fig. 2: Fabrication schematic and structure of a TLIB.
Fig. 3: Schematic and structure of an MST.
Fig. 4: Fabrication schematic and structure of a TELD.
Fig. 5: Schematic of integration into a textile system.
Fig. 6: Electrochemical performance and stability of the TLIBs.
Fig. 7: Multimodal sensing performance and stability of the MSTs.
Fig. 8: Luminous uniformity and stability of TELDs.
Fig. 9: Application example of the textile system.

Similar content being viewed by others

Data availability

All data supporting the findings of this study are available from figshare at https://figshare.com/articles/dataset/Source_data_Textile_system_zip/24511552 and the supporting primary research papers20,36,37,43. The source data of supporting primary research refs. 20,43 are available at https://figshare.com/articles/online_resource/Source_data_FLIBs/14775900 and https://figshare.com/articles/dataset/Source_data_Display_textile_rar/13573205, respectively. The source data of supporting primary research refs. 36,37 are available for research purposes from the corresponding authors upon reasonable request. Source data are provided with this paper.

References

  1. Lee, T. H. The (pre-) history of the integrated circuit: a random walk. IEEE J. Solid-State Circuits 12, 16–22 (2007).

    Article  Google Scholar 

  2. Beerten, K. & Vanhavere, F. The use of a portable electronic device in accident dosimetry. Radiat. Prot. Dosim. 131, 509–512 (2008).

    Article  Google Scholar 

  3. Li, C. et al. Design, reliability, and validity of a portable electronic device based on ergonomics for early screening of adolescent scoliosis. J. Orthop. Transl. 28, 83–89 (2021).

    Google Scholar 

  4. Liang, Y. et al. A review of rechargeable batteries for portable electronic devices. InfoMat 1, 6–32 (2019).

    Article  CAS  Google Scholar 

  5. Chen, C. et al. Functional fiber materials to smart fiber devices. Chem. Rev. 123, 613–662 (2023).

    Article  ADS  CAS  PubMed  Google Scholar 

  6. Xu, X., Xie, S., Zhang, Y. & Peng, H. The rise of fiber electronics. Angew. Chem. Int. Ed. Engl. 58, 13643–13653 (2019).

    Article  CAS  PubMed  Google Scholar 

  7. Luo, Y. et al. Technology roadmap for flexible sensors. ACS Nano 17, 5211–5295 (2023).

    Article  CAS  PubMed  Google Scholar 

  8. Chen, J. et al. Recent progress in essential functions of soft electronic skin. Adv. Funct. Mater. 31, 2104686 (2021).

    Article  CAS  Google Scholar 

  9. Someya, T. & Amagai, M. Toward a new generation of smart skins. Nat. Biotechnol. 37, 382–388 (2019).

    Article  CAS  PubMed  Google Scholar 

  10. Sun, H., Zhang, Y., Zhang, J., Sun, X. & Peng, H. Energy harvesting and storage in 1D devices. Nat. Rev. Mater. 2, 17023 (2017).

    Article  ADS  CAS  Google Scholar 

  11. Wang, L. et al. Application challenges in fiber and textile electronics. Adv. Mater. 32, e1901971 (2020).

    Article  PubMed  Google Scholar 

  12. Peng, H. Fiber electronics. Adv. Mater. 32, e1904697 (2020).

    Article  PubMed  Google Scholar 

  13. Yang, A. et al. Fabric organic electrochemical transistors for biosensors. Adv. Mater. 30, e1800051 (2018).

    Article  PubMed  Google Scholar 

  14. Luo, Y. et al. Learning human–environment interactions using conformal tactile textiles. Nat. Electron. 4, 193–201 (2021).

    Article  Google Scholar 

  15. Libanori, A., Chen, G., Zhao, X., Zhou, Y. & Chen, J. Smart textiles for personalized healthcare. Nat. Electron. 5, 142–156 (2022).

    Article  CAS  Google Scholar 

  16. Lin, Z. et al. Large-scale and washable smart textiles based on triboelectric nanogenerator arrays for self-powered sleeping monitoring. Adv. Funct. Mater. 28, 1704112 (2018).

    Article  ADS  Google Scholar 

  17. Chai, Z. et al. Tailorable and wearable textile devices for solar energy harvesting and simultaneous storage. ACS Nano 10, 9201–9207 (2016).

    Article  CAS  PubMed  Google Scholar 

  18. Xu, L. et al. A perovskite solar cell textile that works at −40 to 160 °C. J. Mater. Chem. A Mater. 8, 5476–5483 (2020).

    Article  CAS  Google Scholar 

  19. Kang, X. et al. Hierarchically assembled counter electrode for fiber solar cell showing record power conversion efficiency. Adv. Funct. Mater. 32, 2207763 (2022).

    Article  CAS  Google Scholar 

  20. He, J. et al. Scalable production of high-performing woven lithium-ion fibre batteries. Nature 597, 57–63 (2021).

    Article  ADS  CAS  PubMed  Google Scholar 

  21. Liao, M. et al. Industrial scale production of fibre batteries by a solution-extrusion method. Nat. Nanotechnol. 17, 372–377 (2022).

    Article  ADS  CAS  PubMed  Google Scholar 

  22. Liao, M., Ye, L., Zhang, Y., Chen, T. & Peng, H. The recent advance in fiber-shaped energy storage devices. Adv. Electron. Mater. 5, 1800456 (2019).

    Article  Google Scholar 

  23. Lin, H. et al. Twisted aligned carbon nanotube/silicon composite fiber anode for flexible wire-shaped lithium-ion battery. Adv. Mater. 26, 1217–1222 (2014).

    Article  ADS  CAS  PubMed  Google Scholar 

  24. Rein, M. et al. Diode fibres for fabric-based optical communications. Nature 560, 214–218 (2018).

    Article  ADS  CAS  PubMed  Google Scholar 

  25. Jamali, V. et al. Perovskite-carbon nanotube light-emitting fibers. Nano Lett. 20, 3178–3184 (2020).

    Article  ADS  CAS  PubMed  Google Scholar 

  26. Dias, T. & Monaragala, R. Development and analysis of novel electroluminescent yarns and fabrics for localized automotive interior illumination. Text. Res. J. 82, 1164–1176 (2012).

    Article  CAS  Google Scholar 

  27. Wang, L. et al. Weaving sensing fibers into electrochemical fabric for real-time health monitoring. Adv. Funct. Mater. 28, 1804456 (2018).

    Article  Google Scholar 

  28. Wang, L. et al. A core–sheath sensing yarn-based electrochemical fabric system for powerful sweat capture and stable sensing. Adv. Funct. Mater. 32, 2200922 (2022).

    Article  CAS  Google Scholar 

  29. Zhai, H. et al. Twisted graphene fibre based breathable, wettable and washable anti-jamming strain sensor for underwater motion sensing. Chem. Eng. J. 439, 135502 (2022).

    Article  CAS  Google Scholar 

  30. Choi, H. W. et al. Smart textile lighting/display system with multifunctional fibre devices for large scale smart home and IoT applications. Nat. Commun. 13, 814 (2022).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  31. Yang, Y. et al. A non-printed integrated-circuit textile for wireless theranostics. Nat. Commun. 12, 4876 (2021).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  32. Zhang, Y. et al. Realizing both high energy and high power densities by twisting three carbon-nanotube-based hybrid fibers. Angew. Chem. Int. Ed. Engl. 54, 11177–11182 (2015).

    Article  CAS  PubMed  Google Scholar 

  33. Chen, X. et al. Electrochromic fiber-shaped supercapacitors. Adv. Mater. 26, 8126–8132 (2014).

    Article  CAS  PubMed  Google Scholar 

  34. Zhang, Z. et al. Weaving efficient polymer solar cell wires into flexible power textiles. Adv. Energy Mater. 4, 1301750 (2014).

    Article  Google Scholar 

  35. Zhou, Y., Wang, C.-H., Lu, W. & Dai, L. Recent advances in fiber-shaped supercapacitors and lithium-ion batteries. Adv. Mater. 32, 1902779 (2020).

    Article  CAS  Google Scholar 

  36. Wang, L. et al. Functionalized helical fibre bundles of carbon nanotubes as electrochemical sensors for long-term in vivo monitoring of multiple disease biomarkers. Nat. Biomed. Eng. 4, 159–171 (2020).

    Article  CAS  PubMed  Google Scholar 

  37. Zhang, Z. et al. A colour-tunable, weavable fibre-shaped polymer light-emitting electrochemical cell. Nat. Photon. 9, 233–238 (2015).

    Article  ADS  CAS  Google Scholar 

  38. Sun, H. et al. Integrating photovoltaic conversion and lithium ion storage into a flexible fiber. J. Mater. Chem. A Mater. 4, 7601–7605 (2016).

    Article  ADS  CAS  Google Scholar 

  39. Chen, X. et al. A novel “energy fiber” by coaxially integrating dye-sensitized solar cell and electrochemical capacitor. J. Mater. Chem. A Mater. 2, 1897–1902 (2014).

    Article  CAS  Google Scholar 

  40. Han, J. et al. Multifunctional coaxial energy fiber toward energy harvesting, storage, and utilization. ACS Nano 15, 1597–1607 (2021).

    Article  CAS  PubMed  Google Scholar 

  41. Pan, Z. et al. All-in-one stretchable coaxial-fiber strain sensor integrated with high-performing supercapacitor. Energy Storage Mater. 25, 124–130 (2020).

    Article  Google Scholar 

  42. Wang, M. et al. Gesture recognition using a bioinspired learning architecture that integrates visual data with somatosensory data from stretchable sensors. Nat. Electron. 3, 563–570 (2020).

    Article  Google Scholar 

  43. Shi, X. et al. Large-area display textiles integrated with functional systems. Nature 591, 240–245 (2021).

    Article  ADS  CAS  PubMed  Google Scholar 

  44. Gao, Z. et al. Flexible self-powered textile formed by bridging photoactive and electrochemically active fiber electrodes. J. Mater. Chem. A Mater. 7, 14447–14454 (2019).

    Article  MathSciNet  CAS  Google Scholar 

  45. Wu, H. et al. Seamlessly-integrated textile electric circuit enabled by self-connecting interwoven points. Chin. J. Polym. Sci. 40, 1323–1330 (2022).

    Article  ADS  CAS  Google Scholar 

  46. Liu, P. et al. Polymer solar cell textiles with interlaced cathode and anode fibers. J. Mater. Chem. A Mater. 6, 19947–19953 (2018).

    Article  ADS  CAS  Google Scholar 

  47. Zhang, Z. et al. Textile display for electronic and brain-interfaced communications. Adv. Mater. 30, e1800323 (2018).

    Article  PubMed  Google Scholar 

  48. Loke, G. et al. Digital electronics in fibres enable fabric-based machine-learning inference. Nat. Commun. 12, 3317 (2021).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  49. Fan, W. et al. Machine-knitted washable sensor array textile for precise epidermal physiological signal monitoring. Sci. Adv. 6, eaay2840 (2020).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  50. Chen, M. et al. Fabric computing: concepts, opportunities, and challenges. Innovation 3, 100340 (2022).

    PubMed  PubMed Central  Google Scholar 

  51. Mo, F. et al. An overview of fiber-shaped batteries with a focus on multifunctionality, scalability, and technical difficulties. Adv. Mater. 32, e1902151 (2020).

    Article  PubMed  Google Scholar 

  52. Shi, Q. et al. Advanced functional fiber and smart textile. Adv. Fiber Mater. 1, 3–31 (2019).

    Article  Google Scholar 

  53. Karuppasamy, K. et al. Ionic liquid-based electrolytes for energy storage devices: a brief review on their limits and applications. Polymers 12, 918 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Wan, F., Zhu, J., Huang, S. & Niu, Z. High-voltage electrolytes for aqueous energy storage devices. Batter. Supercaps 3, 323–330 (2020).

    Article  CAS  Google Scholar 

  55. Burtscher, B. et al. Sensing inflammation biomarkers with electrolyte-gated organic electronic transistors. Adv. Healthc. Mater. 10, e2100955 (2021).

    Article  PubMed  Google Scholar 

  56. Huang, X. et al. Braided fiber current collectors for high-energy-density fiber lithium-ion batteries. Angew. Chem. Int. Ed. Engl. 62, e202303616 (2023).

    Article  CAS  PubMed  Google Scholar 

  57. Ling, S. et al. Densifiable ink extrusion for roll-to-roll fiber lithium-ion batteries with ultra-high linear and volumetric energy densities. Adv. Mater. 35, e2211201 (2023).

    Article  PubMed  Google Scholar 

  58. Wang, M. et al. Conductance-stable and integrated helical fiber electrodes toward stretchy energy storage and self-powered sensing utilization. Chem. Eng. J. 457, 141164 (2023).

    Article  CAS  Google Scholar 

  59. Post, E. R., Orth, M., Russo, P. R. & Gershenfeld, N. E-broidery: design and fabrication of textile-based computing. IBM Syst. J. 39, 840–860 (2000).

    Article  Google Scholar 

  60. de Mulatier, S., Nasreldin, M., Delattre, R., Ramuz, M. & Djenizian, T. Electronic circuits integration in textiles for data processing in wearable technologies. Adv. Mater. Technol. 3, 1700320 (2018).

    Article  Google Scholar 

  61. Fang, S. et al. Thermal field distribution investigation and simulation of silver paste heating fabric by screen printing based on joule heating effect. J. Mater. Sci. Mater. Electron. 32, 27762–27776 (2021).

    Article  CAS  Google Scholar 

  62. Zhou, Z. et al. Supersensitive all-fabric pressure sensors using printed textile electrode arrays for human motion monitoring and human-machine interaction. J. Mater. Chem. C. Mater. 6, 13120–13127 (2018).

    Article  CAS  Google Scholar 

  63. Fu, X. et al. A fiber-shaped solar cell showing a record power conversion efficiency of 10%. J. Mater. Chem. A Mater. 6, 45–51 (2018).

    Article  CAS  Google Scholar 

  64. Zhai, W., Zhu, Z., Sun, X. & Peng, H. Fiber solar cells from high performances towards real applications. Adv. Fiber Mater. 4, 1293–1303 (2022).

    Article  CAS  Google Scholar 

  65. Zhong, J. et al. Fiber-based generator for wearable electronics and mobile medication. ACS Nano 8, 6273–6280 (2014).

    Article  CAS  PubMed  Google Scholar 

  66. Xiao, X. et al. An ultrathin rechargeable solid-state zinc ion fiber battery for electronic textiles. Sci. Adv. 7, eabl3742 (2021).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  67. Senthilkumar, S. T., Wang, Y. & Huang, H. Advances and prospects of fiber supercapacitors. J. Mater. Chem. A Mater. 3, 20863–20879 (2015).

    Article  CAS  Google Scholar 

  68. Fang, Y. et al. Coaxial fiber organic electrochemical transistor with high transconductance. Nano Res. 16, 11885–11892 (2023).

    Article  ADS  CAS  Google Scholar 

  69. Zhong, J. et al. Stretchable self-powered fiber-based strain sensor. Adv. Funct. Mater. 25, 1798–1803 (2015).

    Article  CAS  Google Scholar 

  70. Hatamvand, M. et al. Recent advances in fiber-shaped and planar-shaped textile solar cells. Nano Energy 71, 104609 (2020).

    Article  CAS  Google Scholar 

  71. Qin, Y., Wang, X. & Wang, Z. L. Microfibre-nanowire hybrid structure for energy scavenging. Nature 451, 809–813 (2008).

    Article  ADS  CAS  PubMed  Google Scholar 

  72. Yang, Z. et al. One-step wet-spinning assembly of twisting-structured graphene/carbon nanotube fiber supercapacitor. J. Energy Chem. 51, 434–441 (2020).

    Article  Google Scholar 

  73. Liu, Q. et al. Full-temperature all-solid-state Ti3C2Tx/aramid fiber supercapacitor with optimal balance of capacitive performance and flexibility. Adv. Funct. Mater. 31, 2010944 (2021).

    Article  CAS  Google Scholar 

  74. Qian, Z. et al. An implantable fiber biosupercapacitor with high power density by multi-strand twisting functionalized fibers. Angew. Chem. Int. Ed. Engl. 62, e202303268 (2023).

    Article  CAS  PubMed  Google Scholar 

  75. Kim, S. J. et al. A new architecture for fibrous organic transistors based on a double-stranded assembly of electrode microfibers for electronic textile applications. Adv. Mater. 31, e1900564 (2019).

    Article  PubMed  Google Scholar 

  76. Lan, L., Zhao, F., Yao, Y., Ping, J. & Ying, Y. One-step and spontaneous in situ growth of popcorn-like nanostructures on stretchable double-twisted fiber for ultrasensitive textile pressure sensor. ACS Appl. Mater. Interfaces 12, 10689–10696 (2020).

    Article  CAS  PubMed  Google Scholar 

  77. Tang, X., Li, K., Liu, Y., Zhou, D. & Zhao, J. A soft crawling robot driven by single twisted and coiled actuator. Sens. Actuator A Phys. 291, 80–86 (2019).

    Article  CAS  Google Scholar 

  78. Lin, X. et al. Industrially weavable metal/cotton yarn air electrodes for highly flexible and stable wire-shaped Li–O2 batteries. J. Mater. Chem. A Mater. 5, 3638–3644 (2017).

    Article  CAS  Google Scholar 

  79. Wang, X. et al. Stretchable fiber-shaped lithium metal anode. Energy Storage Mater. 22, 179–184 (2019).

    Article  ADS  Google Scholar 

  80. Fang, X. et al. A cable-shaped lithium sulfur battery. Adv. Mater. 28, 491–496 (2016).

    Article  ADS  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

H.P. acknowledges funding support from the Ministry of Science and Technology of China (2022YFA1203001, 2022YFA1203002), the National Natural Science Foundation of China (T2321003, 22335003) and the Science and Technology Commission of Shanghai Municipality (21511104900, 20JC1414902). X.S. acknowledges funding support from the China Postdoctoral Science Foundation (VLH1717003, KLH1717015). K.Z. acknowledges funding support from the National Natural Science Foundation of China (22105045).

Author information

Authors and Affiliations

Authors

Contributions

H.P. conceived and designed the protocol. Kailin Zhang developed the protocol. Kailin Zhang, H.J. and Z.Z. performed the experiments and analyzed the data. P.Z. and L.Z. contributed to the discussion. Kailin Zhang, X.S. and Kaiwen Zeng wrote the manuscript. H.P. edited the manuscript. All authors read, commented on and accepted the final manuscript.

Corresponding author

Correspondence to Huisheng Peng.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Protocols thanks Esma Ismailova, Luyi Sun and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Related links

Key references using this protocol

He, J. et al. Nature 597, 57–63 (2021): https://doi.org/10.1038/s41586-021-03772-0

Wang, L. et al. Nat. Biomed. Eng. 4, 159–171 (2020): https://doi.org/10.1038/s41551-019-0462-8

Wang, L. et al. Adv. Funct. Mater. 28, 1804456 (2018): https://doi.org/10.1002/adfm.201804456

Shi, X. et al. Nature 591, 240–245 (2021): https://doi.org/10.1038/s41586-021-03295-8

Zhang, Z. et al. Nat. Photon. 9, 233–238 (2015): https://doi.org/10.1038/nphoton.2015.37

Extended data

Extended Data Fig. 1 Stability of interconnections.

a, The resistance change of the interconnections bonded by silver paste or low-temperature solder under different bending angles. bd, The resistance change of the interconnections under bending at 90° (b), 5 N load friction (c) and π rad/cm twisting (d). Error bars show standard deviations of the results from 10 samples.

Source data

Supplementary information

Supplementary Information

Supplementary Figure 1 and caption for Supplementary Video 1

Reporting Summary

Supplementary Video 1

Operation of the textile system for sweat monitoring

Source data

Source Data Fig. 6

Statistical source data

Source Data Extended Data Fig. 1

Statistical source data

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, K., Shi, X., Jiang, H. et al. Design and fabrication of wearable electronic textiles using twisted fiber-based threads. Nat Protoc (2024). https://doi.org/10.1038/s41596-024-00956-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41596-024-00956-6

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing