Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Protocol
  • Published:

Spotting-based differentiation of functional dopaminergic progenitors from human pluripotent stem cells

Abstract

To fully realize the potential of human pluripotent stem cells (hPSCs) for both therapeutic and research purposes, it is critical to follow an efficient and reliable in vitro differentiation method that is based on optimal physical, chemical and developmental cues. This highly reproducible protocol describes how to grow hPSCs such as human induced pluripotent and embryonic stem cells in a physically confined area (‘spot’) and efficiently differentiate them into a highly enriched population of healthy and functional midbrain dopamine progenitors (mDAPs) and midbrain dopamine neurons (mDANs). The protocol takes 28 d, during which cells first grow and differentiate in spots for 14 d and then are replated and further differentiated for a further 14 d as a monolayer culture. We describe how to produce mDAPs, control the quality of cells and cryopreserve mDAPs without loss of viability. Previously we showed that mDANs generated by this ‘spotting’-based method exhibit gene expression and (electro)physiological properties typical of A9 mDANs lost in Parkinson’s disease brains and can rescue motor defects when transplanted into the striatum of 6-hydroxydopamine-lesioned rats. This protocol is scalable for production of mDAPs under good manufacturing practice conditions and was also previously successfully used to generate cells for the first autologous cell replacement therapy of a patient with Parkinson’s disease without the need for immune suppression. We anticipate this protocol could also be readily adapted to use spotting-based culture to further optimize the differentiation of hPSC to alternative differentiated cell types.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Schematic overview of the spotting method for mDA differentiation from hPSCs.
Fig. 2: Morphological changes in cells during the process of differentiation of mDA from hPSCs.
Fig. 3: Cells’ survival and yield during the mDA differentiation process: comparison between spotting and monolayer methods for H9 hESC and C4 hiPSC.
Fig. 4: Effects of different coating materials on hPSC survival and yield.
Fig. 5: Characterization of mDA cells differentiated from hESCs (H9) in vitro and in vivo.

Similar content being viewed by others

Data availability

All data supporting the findings of this study are available within the article and its Supplementary Information files. Source data are provided with this paper.

References

  1. de Lau, L. M. & Breteler, M. M. Epidemiology of Parkinson’s disease. Lancet Neurol. 5, 525–535 (2006).

    Article  PubMed  Google Scholar 

  2. Kefalopoulou, Z. et al. Long-term clinical outcome of fetal cell transplantation for Parkinson disease: two case reports. JAMA Neurol. 71, 83–87 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  3. Piccini, P. et al. Dopamine release from nigral transplants visualized in vivo in a Parkinson’s patient. Nat. Neurosci. 2, 1137–1140 (1999).

    Article  CAS  PubMed  Google Scholar 

  4. Lindvall, O. Developing dopaminergic cell therapy for Parkinson’s disease—give up or move forward? Mov. Disord. 28, 268–273 (2013).

    Article  CAS  PubMed  Google Scholar 

  5. Barker, R. A., Barrett, J., Mason, S. L. & Bjorklund, A. Fetal dopaminergic transplantation trials and the future of neural grafting in Parkinson’s disease. Lancet Neurol. 12, 84–91 (2013).

    Article  CAS  PubMed  Google Scholar 

  6. Sonntag, K. C. et al. Pluripotent stem cell-based therapy for Parkinson’s disease: current status and future prospects. Prog. Neurobiol. 168, 1–20 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  7. Parmar, M., Grealish, S. & Henchcliffe, C. The future of stem cell therapies for Parkinson disease. Nat. Rev. Neurosci. 21, 103–115 (2020).

    Article  CAS  PubMed  Google Scholar 

  8. Barker, R. A., Drouin-Ouellet, J. & Parmar, M. Cell-based therapies for Parkinson disease-past insights and future potential. Nat. Rev. Neurol. 11, 492–503 (2015).

    Article  CAS  PubMed  Google Scholar 

  9. Lindvall, O. & Bjorklund, A. Cell therapeutics in Parkinson’s disease. Neurotherapeutics 8, 539–548 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  10. Song, B. et al. Human autologous iPSC-derived dopaminergic progenitors restore motor function in Parkinson’s disease models. J. Clin. Invest. 130, 904–920 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Schweitzer, J. S. et al. Personalized iPSC-derived dopamine progenitor cells for Parkinson’s disease. N. Engl. J. Med. 382, 1926–1932 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Arenas, E., Denham, M. & Villaescusa, J. C. How to make a midbrain dopaminergic neuron. Development 142, 1918–1936 (2015).

    Article  CAS  PubMed  Google Scholar 

  13. Tao, Y. & Zhang, S. C. Neural subtype specification from human pluripotent stem cells. Cell Stem Cell 19, 573–586 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Kittappa, R., Chang, W. W., Awatramani, R. B. & McKay, R. D. The foxa2 gene controls the birth and spontaneous degeneration of dopamine neurons in old age. PLoS Biol. 5, e325 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  15. Chung, S. et al. Wnt1-lmx1a forms a novel autoregulatory loop and controls midbrain dopaminergic differentiation synergistically with the SHH–FoxA2 pathway. Cell Stem Cell 5, 646–658 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Joksimovic, M. et al. Wnt antagonism of Shh facilitates midbrain floor plate neurogenesis. Nat. Neurosci. 12, 125–131 (2009).

    Article  CAS  PubMed  Google Scholar 

  17. Bonilla, S. et al. Identification of midbrain floor plate radial glia-like cells as dopaminergic progenitors. Glia 56, 809–820 (2008).

    Article  PubMed  Google Scholar 

  18. Ono, Y. et al. Differences in neurogenic potential in floor plate cells along an anteroposterior location: midbrain dopaminergic neurons originate from mesencephalic floor plate cells. Development 134, 3213–3225 (2007).

    Article  CAS  PubMed  Google Scholar 

  19. Chambers, S. M. et al. Highly efficient neural conversion of human ES and iPS cells by dual inhibition of SMAD signaling. Nat. Biotechnol. 27, 275–280 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Kriks, S. et al. Dopamine neurons derived from human ES cells efficiently engraft in animal models of Parkinson’s disease. Nature 480, 547–551 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Morizane, A., Doi, D., Kikuchi, T., Nishimura, K. & Takahashi, J. Small-molecule inhibitors of bone morphogenic protein and activin/nodal signals promote highly efficient neural induction from human pluripotent stem cells. J. Neurosci. Res. 89, 117–126 (2011).

    Article  CAS  PubMed  Google Scholar 

  22. Doi, D. et al. Isolation of human induced pluripotent stem cell-derived dopaminergic progenitors by cell sorting for successful transplantation. Stem Cell Rep. 2, 337–350 (2014).

    Article  CAS  Google Scholar 

  23. Kirkeby, A. et al. Generation of regionally specified neural progenitors and functional neurons from human embryonic stem cells under defined conditions. Cell Rep. 1, 703–714 (2012).

    Article  CAS  PubMed  Google Scholar 

  24. Xi, J. et al. Specification of midbrain dopamine neurons from primate pluripotent stem cells. Stem Cells 30, 1655–1663 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Xiong, M. et al. Human stem cell-derived neurons repair circuits and restore neural function. Cell Stem Cell 28, 112–126 e116 (2021).

    Article  CAS  PubMed  Google Scholar 

  26. Kim, T. W. et al. Biphasic activation of WNT signaling facilitates the derivation of midbrain dopamine neurons from hESCs for translational use. Cell Stem Cell 28, 343–355 e345 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Gantner, C. W., Cota-Coronado, A., Thompson, L. H. & Parish, C. L. An optimized protocol for the generation of midbrain dopamine neurons under defined conditions. STAR Protoc. 1, 100065 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  28. Knusel, B. et al. Promotion of central cholinergic and dopaminergic neuron differentiation by brain-derived neurotrophic factor but not neurotrophin 3. Proc. Natl Acad. Sci. USA 88, 961–965 (1991).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Lin, L. F., Doherty, D. H., Lile, J. D., Bektesh, S. & Collins, F. GDNF: a glial cell line-derived neurotrophic factor for midbrain dopaminergic neurons. Science 260, 1130–1132 (1993).

    Article  CAS  PubMed  Google Scholar 

  30. Ye, W., Shimamura, K., Rubenstein, J. L., Hynes, M. A. & Rosenthal, A. FGF and Shh signals control dopaminergic and serotonergic cell fate in the anterior neural plate. Cell 93, 755–766 (1998).

    Article  CAS  PubMed  Google Scholar 

  31. Madl, C. M., Heilshorn, S. C. & Blau, H. M. Bioengineering strategies to accelerate stem cell therapeutics. Nature 557, 335–342 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Engler, A. J., Sen, S., Sweeney, H. L. & Discher, D. E. Matrix elasticity directs stem cell lineage specification. Cell 126, 677–689 (2006).

    Article  CAS  PubMed  Google Scholar 

  33. Ko, J. Y., Lee, J. Y., Park, C. H. & Lee, S. H. Effect of cell-density on in-vitro dopaminergic differentiation of mesencephalic precursor cells. Neuroreport 16, 499–503 (2005).

    Article  CAS  PubMed  Google Scholar 

  34. Bolognin, S. et al. 3D Cultures of Parkinson’s disease–specific dopaminergic neurons for high content phenotyping and drug testing. Adv. Sci. 6, 1800927 (2019).

    Article  Google Scholar 

  35. Jo, J. et al. Midbrain-like organoids from human pluripotent stem cells contain functional dopaminergic and neuromelanin-producing neurons. Cell Stem Cell 19, 248–257 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Adil, M. M. & Schaffer, D. V. hPSC-derived midbrain dopaminergic neurons generated in a scalable 3-D biomaterial. Curr. Protoc. Stem Cell Biol. 44, 2D 21 21–22D 21 17 (2018).

    Article  PubMed  Google Scholar 

  37. Piao, J. et al. Preclinical efficacy and safety of a human embryonic stem cell-derived midbrain dopamine progenitor product, MSK-DA01. Cell Stem Cell 28, 217–229 e217 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Nolbrant, S., Heuer, A., Parmar, M. & Kirkeby, A. Generation of high-purity human ventral midbrain dopaminergic progenitors for in vitro maturation and intracerebral transplantation. Nat. Protoc. 12, 1962–1979 (2017).

    Article  CAS  PubMed  Google Scholar 

  39. Kirkeby, A. et al. Predictive markers guide differentiation to improve graft outcome in clinical translation of hESC-based therapy for Parkinson’s disease. Cell Stem Cell 20, 135–148 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Doi, D. et al. Pre-clinical study of induced pluripotent stem cell-derived dopaminergic progenitor cells for Parkinson’s disease. Nat. Commun. 11, 3369 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  41. Lee, M. O. et al. Inhibition of pluripotent stem cell-derived teratoma formation by small molecules. Proc. Natl Acad. Sci. USA 110, E3281–E3290 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Kirkeby, A., Parmar, M. & Barker, R. A. Strategies for bringing stem cell-derived dopamine neurons to the clinic: a European approach (STEM-PD). Prog. Brain Res. 230, 165–190 (2017).

    Article  PubMed  Google Scholar 

  43. Kikuchi, T. et al. Idiopathic Parkinson’s disease patient-derived induced pluripotent stem cells function as midbrain dopaminergic neurons in rodent brains. J. Neurosci. Res. 95, 1829–1837 (2017).

    Article  CAS  PubMed  Google Scholar 

  44. Kikuchi, T. et al. Human iPS cell-derived dopaminergic neurons function in a primate Parkinson’s disease model. Nature 548, 592–596 (2017).

    Article  CAS  PubMed  Google Scholar 

  45. Chen, Y. et al. Chemical control of grafted human PSC-derived neurons in a mouse model of Parkinson’s disease. Cell Stem Cell 18, 817–826 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Williams, G. T. Programmed cell death: apoptosis and oncogenesis. Cell 65, 1097–1098 (1991).

    Article  CAS  PubMed  Google Scholar 

  47. Fisher, D. E. Apoptosis in cancer therapy: crossing the threshold. Cell 78, 539–542 (1994).

    Article  CAS  PubMed  Google Scholar 

  48. Roos, W. P. & Kaina, B. DNA damage-induced cell death by apoptosis. Trends Mol. Med. 12, 440–450 (2006).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by NIH grants (NS070577 and OD024622) (to K.S.K.) and NRF grants 2017R1A2B4008456, 2020R1H1A2013386, IITP grant from MSIT 2020-0-01343 (to H.S.), as well as the Parkinson’s Cell Therapy Research Fund at McLean Hospital.

Author information

Authors and Affiliations

Authors

Contributions

K.S.K, H.S and J.K. designed the study; J.K., J.J., B.S., N.L., S.K. and Y.C. performed experiments; J.K., H.S. and J.J collected and analyzed data; J.K., J.J, P.L., H.S and K.S.K wrote the manuscript; H.S and K.S.K supervised the study.

Corresponding authors

Correspondence to Hyemyung Seo or Kwang-Soo Kim.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Protocols thanks Asuka Morizane and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Related links

Key references using this protocol

Song, B. et al. J. Clin. Invest. 130, 904–920 (2020): https://doi.org/10.1172/JCI130767

Schweitzer, J. S. et al. N. Engl. J. Med. 382, 1926–1932 (2020): https://doi.org/10.1056/NEJMoa1915872

Extended data

Extended Data Fig. 1 hPSC spotting condition optimization for H9 hESC cells.

Source data

Extended Data Fig. 2 hPSC spotting condition optimization for H9 hESC cells.

The effects of cell number per spot and the number of spots per plate were determined for optimization of spotting condition. Cell loss, cell harvest, the percentage of dead cells in the final harvest and the ratio of cell loss per cell yield are shown.

Source data

Extended Data Fig. 3 Effects of H9 hESC spotting conditions on viability and gene expression.

Source data

Extended Data Fig. 4 Effects of C4 hiPSC spotting conditions on viability and gene expression.

ac, The health of H9 hESCs and C4 hiPSCs were examined by TUNEL staining (a), expression of apoptosis marker cleaved caspase-3 (b) and expression of apoptosis marker genes (c), as described in ref. 10. Scale bars, 100 µm.

Source data

Extended Data Fig. 5 Characterization of H9-derived mDAPs by immunofluorescence on day 28 following spotting and monolayer culture.

The antibodies for FOXA2, LMX1A and TH were used to stain mDAPs, and the antibodies for cleaved caspase-3 were used to stain apoptotic cells. Scale bars, 100 µm.

Supplementary information

Supplementary Information

Supplementary Tables 1 and 2.

Source data

Source Data Fig. 2b

Percent success rate of cells differentiating to Day 28.

Source Data Fig. 3

Source data for a) cell yield vs input; b) ratio of cell loss/Cell yield; c) dead cell percent in final harvested cell; d) percent of TUNEL-positive cells; e) percent of cleaved Caspase 3-positive cells; f) relative mRNA levels expression of BCL, BCL-XL, BAX, p53, and PUMA for H9 and C4 cells.

Source Data Fig. 5

Source data for: Cell loss; Total Cell yield; Dead Cell percent in final harvested cells; for H9 and C4 cells.

Source Data Extended Data Fig. 1

Source data for H9 cells spotting data using 5K, 10k, 20k, and monolayers looking at: Cell Loss; Cell yield/input; Cell harvest; percent dead cells in final harvest; ratio of cell loss/cell yield.

Source Data Extended Data Fig. 2

Source data for C4 cells spotting data using 5K, 10k, 20k, and monolayers looking at: Cell Loss; Cell yield/input; Cell harvest; percent dead cells in final harvest; ratio of cell loss/cell yield.

Source Data Extended Data Fig. 3

Source data for H9 cells a) TUNEL-positive cells using 10k and 20k cells per spot looking at: 4 spots, 6 spots, 9 spots, 12 spots, and monolayer. b) percent cleaved Caspase 3-positive cells using 10k and 20k cells per spot looking at: 4 spots, 6 spots, 9 spots, 12 spots, and monolayer.

Source Data Extended Data Fig. 4

Source data for C4 cells a) TUNEL-positive cells using 10k and 20k cells per spot looking at: 4 spots, 6 spots, 9 spots, 12 spots, and monolayer. b) percent cleaved Caspase 3-positive cells using 10k and 20k cells per spot looking at: 4 spots, 6 spots, 9 spots, 12 spots, and monolayer.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, J., Jeon, J., Song, B. et al. Spotting-based differentiation of functional dopaminergic progenitors from human pluripotent stem cells. Nat Protoc 17, 890–909 (2022). https://doi.org/10.1038/s41596-021-00673-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41596-021-00673-4

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing