Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Protocol Extension
  • Published:

Recombinant extracellular vesicles as biological reference material for method development, data normalization and assessment of (pre-)analytical variables

Abstract

The diagnostic and therapeutic use of extracellular vesicles (EV) is under intense investigation and may lead to societal benefits. Reference materials are an invaluable resource for developing, improving and assessing the performance of regulated EV applications and for quantitative and objective data interpretation. We have engineered recombinant EV (rEV) as a biological reference material. rEV have similar biochemical and biophysical characteristics to sample EV and function as an internal quantitative and qualitative control throughout analysis. Spiking rEV in bodily fluids prior to EV analysis maps technical variability of EV applications and promotes intra- and inter-laboratory studies. This protocol, which is an Extension to our previously published protocol (Tulkens et al., 2020), describes the production, separation and quality assurance of rEV, their dilution and addition to bodily fluids, and the detection steps based on complementary fluorescence, nucleic acid and protein measurements. We demonstrate the use of rEV for method development, data normalization and assessment of pre-analytical variables. The protocol can be adopted by researchers with standard laboratory and basic EV separation/characterization experience and requires ~4–5 d.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Comparison of rEV with other reported reference materials.
Fig. 2: Visual guidelines showing the outcomes at various Steps during the protocol for rEV production and characterization.
Fig. 3: Setup of AF4–MALS–FLD.
Fig. 4: Characterization of rEV using complementary methods.
Fig. 5: The use of exogenous fusion protein (gag-EGFP) or nucleic acids (EGFP mRNA) to detect rEV in EV-comprising samples.
Fig. 6: Proteomic analysis of urine and blood plasma, spiked or not with increasing numbers of rEV.
Fig. 7: Diverse applications of rEV.

Similar content being viewed by others

Data availability

Proteomic data were submitted to the PRIDE database (PXD017542; Username: reviewer18821@ebi.ac.uk, Password: 0oqaE1p8). The source data underlying Figs. 4, 5, 6 and 7 are provided as Supplementary Data files 1, 2, 3 and 4, respectively. All other relevant data that support the findings of this study are available from the corresponding author upon reasonable request.

References

  1. van Niel, G., D’Angelo, G. & Raposo, G. Shedding light on the cell biology of extracellular vesicles. Nat. Rev. Mol. Cell Biol. 19, 213–228 (2018).

    Article  PubMed  Google Scholar 

  2. Kalluri, R. & LeBleu, V. S. The biology, function, and biomedical applications of exosomes. Science 367, eaau6977 (2020).

  3. Melo, S. A. et al. Glypican-1 identifies cancer exosomes and detects early pancreatic cancer. Nature 523, 177–182 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Hoshino, A. et al. Tumour exosome integrins determine organotropic metastasis. Nature 527, 329–335 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Peinado, H. et al. Melanoma exosomes educate bone marrow progenitor cells toward a pro-metastatic phenotype through MET. Nat. Med. 18, 883–891 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Kamerkar, S. et al. Exosomes facilitate therapeutic targeting of oncogenic KRAS in pancreatic cancer. Nature 546, 498–503 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Hill, A. F. Extracellular vesicles and neurodegenerative diseases. J. Neurosci. 39, 9269–9273 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  8. Cosenza, S. et al. Mesenchymal stem cells-derived exosomes are more immunosuppressive than microparticles in inflammatory arthritis. Theranostics 8, 1399–1410 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Hergenreider, E. et al. Atheroprotective communication between endothelial cells and smooth muscle cells through miRNAs. Nat. Cell Biol. 14, 249–256 (2012).

    Article  CAS  PubMed  Google Scholar 

  10. Mendt, M. et al. Generation and testing of clinical-grade exosomes for pancreatic cancer. JCI Insight 3, e99263 (2018).

    Article  PubMed Central  Google Scholar 

  11. De Wever, O. & Hendrix, A. A supporting ecosystem to mature extracellular vesicles into clinical application. EMBO J. 38, e101412 (2019).

  12. Van Deun, J. et al. The impact of disparate isolation methods for extracellular vesicles on downstream RNA Profiling. J. Extracell. Vesicles 3, 24858 (2014).

    Article  Google Scholar 

  13. Kowal, J. et al. Proteomic comparison defines novel markers to characterize heterogeneous populations of extracellular vesicle subtypes. Proc. Natl Acad. USA 113, 968–977 (2016).

    Article  Google Scholar 

  14. Van Deun, J. et al. EV-TRACK: transparent reporting and centralizing knowledge in extracellular vesicle research. Nat. Methods 14, 228–232 (2017).

    Article  PubMed  Google Scholar 

  15. Simonsen, J. B. What are we looking at? Extracellular vesicles, lipoproteins, or both? Circ. Res. 121, 920–922 (2017).

    Article  CAS  PubMed  Google Scholar 

  16. Jeppesen, D. K. et al. Reassessment of exosome composition. Cell 177, 428–445.e18 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Tulkens, J. et al. Increased levels of systemic LPS-positive bacterial extracellular vesicles in patients with intestinal barrier dysfunction. Gut 69, 191–193 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  18. Geeurickx, E. & Hendrix, A. Targets, pitfalls and reference materials for liquid biopsy tests in cancer diagnostics. Mol. Aspects Med. 72, 100828 (2019).

  19. Valkonen, S. et al. Biological reference materials for extracellular vesicle studies. Eur. J. Pharm. Sci. 98, 4–16 (2017).

    Article  CAS  PubMed  Google Scholar 

  20. Geeurickx, E. et al. The generation and use of recombinant extracellular vesicles as biological reference material. Nat. Commun. 10, 3288 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  21. van der Pol, E., Coumans, F. A. W., Sturk, A., Nieuwland, R. & Van Leeuwen, T. G. Refractive index determination of nanoparticles in suspension using nanoparticle tracking analysis. Nano Lett. 14, 6195–6201 (2014).

    Article  PubMed  Google Scholar 

  22. Gardiner, C. et al. Measurement of refractive index by nanoparticle tracking analysis reveals heterogeneity in extracellular vesicles. J. Extracell. Vesicles 3, 25361 (2014).

    Article  PubMed  Google Scholar 

  23. Tulkens, J., De Wever, O. & Hendrix, A. Analyzing bacterial extracellular vesicles in human body fluids by orthogonal biophysical separation and biochemical characterization. Nat. Protoc. 15, 40–67 (2020).

    Article  CAS  PubMed  Google Scholar 

  24. Varga, Z. et al. Hollow organosilica beads as reference particles for optical detection of extracellular vesicles. J. Thromb. Haemost. 16, 1646–1655 (2018).

    Article  Google Scholar 

  25. Lapinski, M. M., Castro-Forero, A., Greiner, A. J., Ofoli, R. Y. & Blanchard, G. J. Comparison of liposomes formed by sonication and extrusion: rotational and translational diffusion of an embedded chromophore. Langmuir 23, 11677–11678 (2007).

    Article  CAS  PubMed  Google Scholar 

  26. Lozano-Andrés, E. et al. Tetraspanin-decorated extracellular vesicle-mimetics as a novel adaptable reference material. J. Extracell. Vesicles 8, 1573052 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  27. Lane, R. E., Korbie, D., Anderson, W., Vaidyanathan, R. & Trau, M. Analysis of exosome purification methods using a model liposome system and tunable-resistive pulse sensing. Sci. Rep. 5, 7639 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  28. Görgens, A. et al. Optimisation of imaging flow cytometry for the analysis of single extracellular vesicles by using fluorescence-tagged vesicles as biological reference material. J. Extracell. Vesicles 8, 1587567 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  29. Lai, C. P. et al. Visualization and tracking of tumour extracellular vesicle delivery and RNA translation using multiplexed reporters. Nat. Commun. 6, 7029 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. van der Vlist, E. J., Nolte-’t Hoen, E. N. M., Stoorvogel, W., Arkesteijn, G. J. A. & Wauben, M. H. M. Fluorescent labeling of nano-sized vesicles released by cells and subsequent quantitative and qualitative analysis by high-resolution flow cytometry. Nat. Protoc. 7, 1311–1326 (2012).

    Article  PubMed  Google Scholar 

  31. Tang, V. A. et al. Engineered retroviruses as fluorescent biological reference particles for nanoscale flow cytometry. Preprint at bioRxiv https://doi.org/10.1101/614461 (2019).

  32. Gould, S. J., Booth, A. M. & Hildreth, J. E. K. The Trojan exosome hypothesis. Proc. Natl Acad. Sci. USA 100, 10592–10597 (2003).

    Article  CAS  PubMed  Google Scholar 

  33. Fujii, K., Hurley, J. H. & Freed, E. O. Beyond Tsg101: the role of Alix in ‘ESCRTing’ HIV-1. Nat. Rev. Microbiol. 5, 912–916 (2007).

    Article  CAS  PubMed  Google Scholar 

  34. de Rond, L. et al. Comparison of generic fluorescent markers for detection of extracellular vesicles by flow cytometry. Clin. Chem. 64, 680–689 (2018).

    Article  PubMed  Google Scholar 

  35. Théry, C. et al. Minimal information for studies of extracellular vesicles 2018 (MISEV2018): a position statement of the International Society for Extracellular Vesicles and update of the MISEV2014 guidelines. J. Extracell. Vesicles 7, 1535750 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  36. Coumans, F. A. W. et al. Methodological guidelines to study extracellular vesicles. Circ. Res. 120, 1632–1648 (2017).

    Article  CAS  PubMed  Google Scholar 

  37. Dettenhofer, M. & Yu, X. F. Highly purified human immunodeficiency virus type 1 reveals a virtual absence of Vif in virions. J. Virol. 73, 1460–1467 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Jeyaram, A. & Jay, S. M. Preservation and storage stability of extracellular vesicles for therapeutic applications. AAPS J. 20, 1 (2018).

    Article  CAS  Google Scholar 

  39. Lorincz, Á. M. et al. Effect of storage on physical and functional properties of extracellular vesicles derived from neutrophilic granulocytes. J. Extracell. Vesicles 3, 25465 (2014).

    Article  PubMed  Google Scholar 

  40. Dhondt, B. et al. Unravelling the proteomic landscape of extracellular vesicles in prostate cancer by density-based fractionation of urine. J. Extracell. Vesicles 9, 1736935 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Suk, J. S., Xu, Q., Kim, N., Hanes, J. & Ensign, L. M. PEGylation as a strategy for improving nanoparticle-based drug and gene delivery. Adv. Drug Deliv. Rev. 99, 28–51 (2016).

    Article  CAS  PubMed  Google Scholar 

  42. van der Pol, E. et al. Particle size distribution of exosomes and microvesicles determined by transmission electron microscopy, flow cytometry, nanoparticle tracking analysis, and resistive pulse sensing. J. Thromb. Haemost. 12, 1182–1192 (2014).

    Article  PubMed  Google Scholar 

  43. Zhu, J. Mammalian cell protein expression for biopharmaceutical production. Biotechnol. Adv. 30, 1158–1170 (2012).

    Article  CAS  PubMed  Google Scholar 

  44. Lin, Y. C. et al. Genome dynamics of the human embryonic kidney 293 lineage in response to cell biology manipulations. Nat. Commun. 5, 4767 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Kräusslich, H. G. et al. Analysis of protein expression and virus-like particle formation in mammalian cell lines stably expressing HIV-1 gag and env gene products with or without active HIV proteinase. Virology 192, 605–617 (1993).

    Article  PubMed  Google Scholar 

  46. Nie, Z. et al. HIV-1 protease processes procaspase 8 to cause mitochondrial release of cytochrome c, caspase cleavage and nuclear fragmentation. Cell Death Differ. 9, 1172–1184 (2002).

    Article  CAS  PubMed  Google Scholar 

  47. Titeca, K. et al. Analyzing trapped protein complexes by Virotrap and SFINX. Nat. Protoc. 12, 881–898 (2017).

    Article  CAS  PubMed  Google Scholar 

  48. Young, A. T. L., Moore, R. B., Murray, A. G., Mullen, J. C. & Lakey, J. R. T. Assessment of different transfection parameters in efficiency optimization. Cell Transplant. 13, 179–185 (2004).

    Article  PubMed  Google Scholar 

  49. Vergauwen, G. et al. Confounding factors of ultrafiltration and protein analysis in extracellular vesicle research. Sci. Rep. 7, 2704 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  50. Livshts, M. A. et al. Isolation of exosomes by differential centrifugation: theoretical analysis of a commonly used protocol. Sci. Rep. 5, 17319 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Maas, S. L. N. et al. Possibilities and limitations of current technologies for quantification of biological extracellular vesicles and synthetic mimics. J. Control. Release 200, 87–96 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Bustin, S. A. et al. The MIQE guidelines: minimum information for publication of quantitative real-time PCR experiments. Clin. Chem. 55, 611–622 (2009).

    Article  CAS  PubMed  Google Scholar 

  53. Quah, B. J. C. & O’Neill, H. C. Mycoplasma contaminants present in exosome preparations induce polyclonal B cell responses. J. Leukoc. Biol. 82, 1070–1082 (2007).

    Article  CAS  PubMed  Google Scholar 

  54. Mahmood, T. & Yang, P.-C. Western blot: technique, theory, and trouble shooting. N. Am. J. Med. Sci. 4, 429–434 (2012).

    Google Scholar 

Download references

Acknowledgements

This work was supported by Ghent University (Concerted Research Actions and Industrial Research Fund), Ghent University Hospital, Kom Op Tegen Kanker, and research project (A.H.) and PhD position (E.G.) strategic basic research from the Fund for Scientific Research Flanders (FWO).

Author information

Authors and Affiliations

Authors

Contributions

E.G. planned, designed and performed the experiments and co-wrote the manuscript. L.L and B.G.D.G. performed rEV separation and characterization using AF4–MALS. P.R. performed proteomics experiments. O.D.W. and A.H. initiated the project, designed and interpreted experiments and co-wrote the manuscript. All authors read and approved the manuscript.

Corresponding author

Correspondence to An Hendrix.

Ethics declarations

Competing interests

A.H., O.D.W. and E.G. are inventors on the patent application covering the rEV technology (WO2019091964). The remaining authors declare no competing interests.

Additional information

Peer review information Nature Protocols thanks Bernd Giebel and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Related links

Key references using this protocol

Geeurickx, E. et al. Nat. Commun. 10, 3288 (2019): https://doi.org/10.1038/s41467-019-11182-0

Tulkens, J., De Wever, O. & Hendrix, A. Nat. Protoc. 15, 40–67 (2020): https://doi.org/10.1038/s41596-019-0236-5

Dhondt, B. et al. J. Extracell. Vesicles 9, 1736935 (2020): https://doi.org/10.1080/20013078.2020.1736935

This protocol is an extension to: Nat. Protoc. 15, 40–67 (2020): https://doi.org/10.1038/s41596-019-0236-5

Supplementary information

Supplementary Information

Supplementary Fig. 1.

Reporting Summary

Supplementary Data 1

Source data of Fig. 4.

Supplementary Data 2

Source data of Fig. 5.

Supplementary Data 3

Source data of Fig. 6.

Supplementary Data 4

Source data of Fig. 7.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Geeurickx, E., Lippens, L., Rappu, P. et al. Recombinant extracellular vesicles as biological reference material for method development, data normalization and assessment of (pre-)analytical variables. Nat Protoc 16, 603–633 (2021). https://doi.org/10.1038/s41596-020-00446-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41596-020-00446-5

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing