Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Protocol
  • Published:

Sequential phosphoproteomics and N-glycoproteomics of plasma-derived extracellular vesicles

Abstract

Extracellular vesicles (EVs) are increasingly being recognized as important vehicles for intercellular communication and as promising sources for biomarker discovery. Because the state of protein post-translational modifications (PTMs) such as phosphorylation and glycosylation can be a key determinant of cellular physiology, comprehensive characterization of protein PTMs in EVs can be particularly valuable for early-stage diagnostics and monitoring of disease status. However, the analysis of PTMs in EVs has been complicated by limited amounts of purified EVs, low-abundance PTM proteins, and interference from proteins and metabolites in biofluids. Recently, we developed an approach to isolate phosphoproteins and glycoproteins in EVs from small volumes of human plasma that enabled us to identify nearly 10,000 unique phosphopeptides and 1,500 unique N-glycopeptides. The approach demonstrated the feasibility of using these data to identify potential markers to differentiate disease from healthy states. Here we present an updated workflow to sequentially isolate phosphopeptides and N-glycopeptides, enabling multiple PTM analyses of the same clinical samples. In this updated workflow, we have improved the reproducibility and efficiency of EV isolation, protein extraction, and phosphopeptide/N-glycopeptide enrichment to achieve sensitive analyses of low-abundance PTMs in EVs isolated from 1 mL of plasma. The modularity of the workflow also allows for the characterization of phospho- or glycopeptides only and enables additional analysis of total proteomes and other PTMs of interest. After blood collection, the protocol takes 2 d, including EV isolation, PTM/peptide enrichment, mass spectrometry analysis, and data quantification.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Workflow for sequential EV phosphoproteomics and glycoproteomics.
Fig. 2: Schematic of experimental setup for sequential and separate phosphopeptide and glycopeptide enrichments.
Fig. 3: Venn diagrams showing the phosphopeptide and phosphoprotein overlap between replicates and the overlap between the separate and sequential workflows.
Fig. 4: Venn diagrams showing the glycopeptide and glycoprotein overlap between replicates and the overlap between the separate and sequential workflows.
Fig. 5: Quantitation results from MaxQuant and Perseus showing Pearson correlations across each condition and replicate.

Similar content being viewed by others

Data availability

The raw MS data from this study have been deposited into the ProteomeXchange Consortium via the PRIDE Archive with the identifier PXD013893 (https://www.ebi.ac.uk/pride/archive/projects/PXD013893).

References

  1. Harel, M., Oren-Giladi, P., Kaidar-Person, O., Shaked, Y. & Geiger, T. Proteomics of microparticles with SILAC Quantification (PROMIS-Quan): a novel proteomic method for plasma biomarker quantification. Mol. Cell Proteom. 14, 1127–1136 (2015).

    CAS  Google Scholar 

  2. Milane, L., Singh, A., Mattheolabakis, G., Suresh, M. & Amiji, M. M. Exosome mediated communication within the tumor microenvironment. J. Control Release 219, 278-294 (2015).

  3. Cocucci, E. & Meldolesi, J. Ectosomes and exosomes: shedding the confusion between extracellular vesicles. Trends Cell Biol. 25, 364–372 (2015).

    CAS  PubMed  Google Scholar 

  4. An, T. et al. Exosomes serve as tumour markers for personalized diagnostics owing to their important role in cancer metastasis. J. Extracell. Vesicles 4, 27522 (2015).

    PubMed  Google Scholar 

  5. Dobrowolski, R. & De Robertis, E. M. Endocytic control of growth factor signalling: multivesicular bodies as signalling organelles. Nat. Rev. Mol. Cell Biol. 13, 53–60 (2011).

    PubMed  PubMed Central  Google Scholar 

  6. Melo, S. A. et al. Glypican-1 identifies cancer exosomes and detects early pancreatic cancer. Nature 523, 177–182 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Gonzales, P. A. et al. Large-scale proteomics and phosphoproteomics of urinary exosomes. J. Am. Soc. Nephrol. 20, 363–379 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Boukouris, S. & Mathivanan, S. Exosomes in bodily fluids are a highly stable resource of disease biomarkers. Proteom. Clin. Appl. 9, 358–367 (2015).

    CAS  Google Scholar 

  9. Wu, A. Y., Ueda, K. & Lai, C. P. Proteomic analysis of extracellular vesicles for cancer diagnostics. Proteomics 19, e1800162 (2019).

    PubMed  Google Scholar 

  10. Xu, R., Greening, D. W., Zhu, H. J., Takahashi, N. & Simpson, R. J. Extracellular vesicle isolation and characterization: toward clinical application. J. Clin. Invest. 126, 1152–1162 (2016).

    PubMed  PubMed Central  Google Scholar 

  11. Bandu, R., Oh, J. W. & Kim, K. P. Mass spectrometry-based proteome profiling of extracellular vesicles and their roles in cancer biology. Exp. Mol. Med. 51, 30 (2019).

    PubMed  PubMed Central  Google Scholar 

  12. Emmanouilidi, A., Paladin, D., Greening, D. W. & Falasca, M. Oncogenic and non-malignant pancreatic exosome cargo reveal distinct expression of oncogenic and prognostic factors involved in tumor invasion and metastasis. Proteomics 19, e1800158 (2019).

    PubMed  Google Scholar 

  13. Hurwitz, S. N. & Meckes, D. G., Jr. Extracellular vesicle integrins distinguish unique cancers. Proteomes 7, 7020014 (2019).

  14. Bae, S., Brumbaugh, J. & Bonavida, B. Exosomes derived from cancerous and non-cancerous cells regulate the anti-tumor response in the tumor microenvironment. Genes Cancer 9, 87–100 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Ghosh, A. et al. Rapid isolation of extracellular vesicles from cell culture and biological fluids using a synthetic peptide with specific affinity for heat shock proteins. PLoS One 9, e110443 (2014).

    PubMed  PubMed Central  Google Scholar 

  16. Lobb, R. J. et al. Optimized exosome isolation protocol for cell culture supernatant and human plasma. J. Extracell. Vesicles 4, 27031 (2015).

    PubMed  Google Scholar 

  17. Gallart-Palau, X. et al. Extracellular vesicles are rapidly purified from human plasma by potein organic solvent precipitation (PROSPR). Sci. Rep. 5, 14664 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Moreno-Gonzalo, O., Villarroya-Beltri, C. & Sanchez-Madrid, F. Post-translational modifications of exosomal proteins. Front. Immunol. 5, 383 (2014).

    PubMed  PubMed Central  Google Scholar 

  19. Zhang, Y., Wu, X. & Tao, W. A. Characterization and applications of extracellular vesicle proteome with post-translational modifications. Trends Analyt. Chem. 107, 21–30 (2018).

  20. Gerlach, J. Q. & Griffin, M. D. Getting to know the extracellular vesicle glycome. Mol. Biosyst. 12, 1071–1081 (2016).

    CAS  PubMed  Google Scholar 

  21. Oeyen, E. et al. Bladder cancer diagnosis and follow-up: the current status and possible role of extracellular vesicles. Int. J. Mol. Sci. 20, 821 (2019).

    CAS  PubMed Central  Google Scholar 

  22. Mann, M. & Jensen, O. N. Proteomic analysis of post-translational modifications. Nat. Biotechnol. 21, 255–261 (2003).

    CAS  PubMed  Google Scholar 

  23. Aebersold, R. & Goodlett, D. R. Mass spectrometry in proteomics. Chem. Rev. 101, 269–295 (2001).

    CAS  PubMed  Google Scholar 

  24. Kettenbach, A. N., Rush, J. & Gerber, S. A. Absolute quantification of protein and post-translational modification abundance with stable isotope-labeled synthetic peptides. Nat. Protoc. 6, 175–186 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Chen, I. H. et al. Phosphoproteins in extracellular vesicles as candidate markers for breast cancer. Pro. c. Natl Acad. Sci. USA 114, 3175–3180 (2017).

    CAS  Google Scholar 

  26. Chen, I. H. et al. Analytical pipeline for discovery and verification of glycoproteins from plasma-derived extracellular vesicles as breast cancer biomarkers. Anal. Chem. 90, 6307–6313 (2018).

    CAS  PubMed  Google Scholar 

  27. Jaros, J. A. et al. Clinical use of phosphorylated proteins in blood serum analysed by immobilised metal ion affinity chromatography and mass spectrometry. J. Proteom. 76(Spec No.), 36–42 (2012).

    CAS  Google Scholar 

  28. Hu, L. et al. Profiling of endogenous serum phosphorylated peptides by titanium (IV) immobilized mesoporous silica particles enrichment and MALDI-TOFMS detection. Anal. Chem. 81, 94–104 (2009).

    CAS  PubMed  Google Scholar 

  29. Sokolova, V. et al. Characterisation of exosomes derived from human cells by nanoparticle tracking analysis and scanning electron microscopy. Colloids Surf. B Biointerfaces 87, 146–150 (2011).

    CAS  PubMed  Google Scholar 

  30. Palmisano, G. et al. Characterization of membrane-shed microvesicles from cytokine-stimulated beta-cells using proteomics strategies. Mol. Cell. Proteom. 11, 230–243 (2012).

    Google Scholar 

  31. Royo, F. et al. Different EV enrichment methods suitable for clinical settings yield different subpopulations of urinary extracellular vesicles from human samples. J. Extracell. Vesicles 5, 29497 (2016).

    PubMed  Google Scholar 

  32. Cvjetkovic, A., Lotvall, J. & Lasser, C. The influence of rotor type and centrifugation time on the yield and purity of extracellular vesicles. J. Extracell. Vesicles 3, 1–11 (2014).

    Google Scholar 

  33. Enderle, D. et al. Characterization of RNA from exosomes and other extracellular vesicles isolated by a novel spin column-based method. PLoS One 10, e0136133 (2015).

    PubMed  PubMed Central  Google Scholar 

  34. Niu, Z. et al. Polymer-based precipitation preserves biological activities of extracellular vesicles from an endometrial cell line. PLoS One 12, e0186534 (2017).

    PubMed  PubMed Central  Google Scholar 

  35. Yu, L. L. et al. A comparison of traditional and novel methods for the separation of exosomes from human samples. Biomed. Re. s. Int. 2018, 3634563 (2018).

    Google Scholar 

  36. Tauro, B. J. et al. Two distinct populations of exosomes are released from LIM1863 colon carcinoma cell-derived organoids. Mol. Cell. Proteom. 12, 587–598 (2013).

    CAS  Google Scholar 

  37. Wu, X., Li, L., Iliuk, A. & Tao, W. A. Highly efficient phosphoproteome capture and analysis from urinary extracellular vesicles. J. Proteome Res. 17, 3308–3316 (2018).

    CAS  PubMed  Google Scholar 

  38. Ramirez, M. I. et al. Technical challenges of working with extracellular vesicles. Nanoscale 10, 881–906 (2018).

    CAS  PubMed  Google Scholar 

  39. Contreras-Naranjo, J. C., Wu, H. J. & Ugaz, V. M. Microfluidics for exosome isolation and analysis: enabling liquid biopsy for personalized medicine. Lab Chip 17, 3558–3577 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Rosa-Fernandes, L., Rocha, V. B., Carregari, V. C., Urbani, A. & Palmisano, G. A perspective on extracellular vesicles proteomics. Front Chem. 5, 102 (2017).

    PubMed  PubMed Central  Google Scholar 

  41. Wisniewski, J. R., Zougman, A., Nagaraj, N. & Mann, M. Universal sample preparation method for proteome analysis. Nat. Methods 6, 359–362 (2009).

    CAS  PubMed  Google Scholar 

  42. Heath, N. et al. Rapid isolation and enrichment of extracellular vesicle preparations using anion exchange chromatography. Sci. Rep. 8, 5730 (2018).

    PubMed  PubMed Central  Google Scholar 

  43. Feist, P. & Hummon, A. B. Proteomic challenges: sample preparation techniques for microgram-quantity protein analysis from biological samples. Int. J. Mol. Sci. 16, 3537–3563 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Gundry, R. L. et al. Preparation of proteins and peptides for mass spectrometry analysis in a bottom-up proteomics workflow. Curr. Protoc. Mol. Biol. Unit 10.25, supplement 88 (2009).

    Google Scholar 

  45. Bereman, M. S., Egertson, J. D. & MacCoss, M. J. Comparison between procedures using SDS for shotgun proteomic analyses of complex samples. Proteomics 11, 2931–2935 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Hsu, C. C. et al. Universal plant phosphoproteomics workflow and its application to tomato signaling in response to cold stress. Mol. Cell. Proteom. 17, 2068–2080 (2018).

    CAS  Google Scholar 

  47. Bayramoglu, G., Celikbicak, O., Arica, M. Y. & Salih, B. Trypsin Immobilized on Magnetic Beads via Click Chemistry: Fast Proteolysis of Proteins in a Microbioreactor for MALDI-ToF-MS Peptide Analysis. Ind. Eng. Chem. Res. 53, 4554–4564 (2014).

    CAS  Google Scholar 

  48. Sielaff, M. et al. Evaluation of FASP, SP3, and iST protocols for proteomic sample preparation in the low microgram range. J. Proteome Res. 16, 4060–4072 (2017).

    CAS  PubMed  Google Scholar 

  49. Ludwig, K. R., Schroll, M. M. & Hummon, A. B. Comparison of in-solution, FASP, and S-trap based digestion methods for nottom-up proteomic studies. J. Proteome Res. 17, 2480–2490 (2018).

    CAS  PubMed  Google Scholar 

  50. Swaney, D. L. & Villen, J. Enrichment of phosphopeptides via immobilized metal affinity chromatography. Cold Spring Harb. Protoc. 2016, 088005 (2016).

    Google Scholar 

  51. Fila, J. & Honys, D. Enrichment techniques employed in phosphoproteomics. Amino Acids 43, 1025–1047 (2012).

    CAS  PubMed  Google Scholar 

  52. Yue, X., Schunter, A. & Hummon, A. B. Comparing multistep immobilized metal affinity chromatography and multistep TiO2 methods for phosphopeptide enrichment. Anal. Chem. 87, 8837–8844 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Montoya, A., Beltran, L., Casado, P., Rodriguez-Prados, J. C. & Cutillas, P. R. Characterization of a TiO(2) enrichment method for label-free quantitative phosphoproteomics. Methods 54, 370–378 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Huang, J. et al. Highly efficient release of glycopeptides from hydrazide beads by hydroxylamine assisted PNGase F deglycosylation for N-glycoproteome analysis. Anal. Chem. 87, 10199–10204 (2015).

    CAS  PubMed  Google Scholar 

  55. Zhang, H., Li, X. J., Martin, D. B. & Aebersold, R. Identification and quantification of N-linked glycoproteins using hydrazide chemistry, stable isotope labeling and mass spectrometry. Nat. Biotechnol. 21, 660–666 (2003).

    CAS  PubMed  Google Scholar 

  56. Cao, W., Huang, J., Jiang, B., Gao, X. & Yang, P. Highly selective enrichment of glycopeptides based on zwitterionically functionalized soluble nanopolymers. Sci. Rep. 6, 29776 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Zhu, R., Zacharias, L., Wooding, K. M., Peng, W. & Mechref, Y. Glycoprotein enrichment analytical techniques: advantages and disadvantages. Methods Enzymol. 585, 397–429 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Zhang, C. et al. Evaluation of different N-glycopeptide enrichment methods for N-glycosylation sites mapping in mouse brain. J. Proteome Res. 15, 2960–2968 (2016).

    CAS  PubMed  Google Scholar 

  59. Nilsson, J. et al. Enrichment of glycopeptides for glycan structure and attachment site identification. Nat. Methods 6, 809–811 (2009).

    CAS  PubMed  Google Scholar 

  60. Yang, W. et al. Comparison of enrichment methods for intact N- and O-linked glycopeptides using strong anion exchange and hydrophilic interaction liquid chromatography. Anal. Chem. 89, 11193–11197 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Liebler, D. C. & Zimmerman, L. J. Targeted quantitation of proteins by mass spectrometry. Biochemistry 52, 3797–3806 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  62. Osinalde, N., Aloria, K., Omaetxebarria, M. J. & Kratchmarova, I. Targeted mass spectrometry: An emerging powerful approach to unblock the bottleneck in phosphoproteomics. J. Chromatogr. B 1055-1056, 29–38 (2017).

    CAS  Google Scholar 

  63. Thery, C. et al. Minimal information for studies of extracellular vesicles 2018 (MISEV2018): a position statement of the International Society for Extracellular Vesicles and update of the MISEV2014 guidelines. J. Extracell. Vesicles 7, 1535750 (2018).

    PubMed  PubMed Central  Google Scholar 

  64. Shao, H. et al. New technologies for analysis of extracellular vesicles. Chem. Rev. 118, 1917–1950 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  65. Szatanek, R. et al. The methods of choice for extracellular vesicles (EVs) characterization. Int. J. Mol. Sci. 18, 1153 (2017).

    PubMed Central  Google Scholar 

  66. Lotvall, J. et al. Minimal experimental requirements for definition of extracellular vesicles and their functions: a position statement from the International Society for Extracellular Vesicles. J. Extracell. Vesicles 3, 26913 (2014).

    PubMed  Google Scholar 

  67. Masuda, T., Saito, N., Tomita, M. & Ishihama, Y. Unbiased quantitation of Escherichia coli membrane proteome using phase transfer surfactants. Mol. Cell. Proteom. 8, 2770–2777 (2009).

    CAS  Google Scholar 

  68. Rappsilber, J., Mann, M. & Ishihama, Y. Protocol for micro-purification, enrichment, pre-fractionation and storage of peptides for proteomics using StageTips. Nat. Protoc. 2, 1896–1906 (2007).

    CAS  PubMed  Google Scholar 

  69. Humphrey, S. J., Karayel, O., James, D. E. & Mann, M. High-throughput and high-sensitivity phosphoproteomics with the EasyPhos platform. Nat. Protoc. 13, 1897–1916 (2018).

    CAS  PubMed  Google Scholar 

  70. Mertins, P. et al. Reproducible workflow for multiplexed deep-scale proteome and phosphoproteome analysis of tumor tissues by liquid chromatography-mass spectrometry. Nat. Protoc. 13, 1632–1661 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  71. Hernandez-Valladares, M. et al. Reliable FASP-based procedures for optimal quantitative proteomic and phosphoproteomic analysis on samples from acute myeloid leukemia patients. Biol. Proced. Online 18, 13 (2016).

    PubMed  PubMed Central  Google Scholar 

  72. Witwer, K.W. et al. Standardization of sample collection, isolation and analysis methods in extracellular vesicle research. J. Extracell. Vesicles 2, 20360 (2013).

    Google Scholar 

  73. Nakai, W. et al. A novel affinity-based method for the isolation of highly purified extracellular vesicles. Sci. Rep. 6, 33935 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  74. Kowal, J. et al. Proteomic comparison defines novel markers to characterize heterogeneous populations of extracellular vesicle subtypes. Proc. Natl Acad. Sci. USA 113, E968–977 (2016).

    CAS  PubMed  Google Scholar 

  75. Coumans, F. A. et al. Reproducible extracellular vesicle size and concentration determination with tunable resistive pulse sensing. J. Extracell. Vesicles 3, 25922 (2014).

    PubMed  Google Scholar 

  76. Yuana, Y. et al. Cryo-electron microscopy of extracellular vesicles in fresh plasma. J. Extracell. Vesicles 2, 21494 (2013).

    Google Scholar 

  77. Iliuk, A. B., Martin, V. A., Alicie, B. M., Geahlen, R. L. & Tao, W. A. In-depth analyses of kinase-dependent tyrosine phosphoproteomes based on metal ion-functionalized soluble nanopolymers. Mol. Cell. Proteom. 9, 2162–2172 (2010).

    CAS  Google Scholar 

  78. Ye, J. et al. Optimized IMAC-IMAC protocol for phosphopeptide recovery from complex biological samples. J. Proteome Res. 9, 3561–3573 (2010).

    CAS  PubMed  Google Scholar 

  79. Larsen, M. R., Thingholm, T. E., Jensen, O. N., Roepstorff, P. & Jorgensen, T. J. Highly selective enrichment of phosphorylated peptides from peptide mixtures using titanium dioxide microcolumns. Mol. Cell. Proteom. 4, 873–886 (2005).

    CAS  Google Scholar 

  80. Tyanova, S., Temu, T. & Cox, J. The MaxQuant computational platform for mass spectrometry-based shotgun proteomics. Nat. Protoc. 11, 2301–2319 (2016).

    CAS  PubMed  Google Scholar 

  81. Cox, J. & Mann, M. MaxQuant enables high peptide identification rates, individualized p.p.b.-range mass accuracies and proteome-wide protein quantification. Nat. Biotechnol. 26, 1367–1372 (2008).

    CAS  PubMed  Google Scholar 

  82. Tyanova, S. et al. The Perseus computational platform for comprehensive analysis of (prote)omics data. Nat. Methods 13, 731–740 (2016).

    CAS  PubMed  Google Scholar 

  83. Tyanova, S. & Cox, J. Perseus: a bioinformatics platform for integrative analysis of proteomics data in cancer tesearch. Methods Mol. Biol. 1711, 133–148 (2018).

    CAS  PubMed  Google Scholar 

  84. Rauniyar, N. Parallel reaction monitoring: a targeted experiment performed using high resolution and high mass accuracy mass spectrometry. Int. J. Mol. Sci. 16, 28566–28581 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  85. Cordwell, S. J. & White, M. Y. Targeted proteomics for determining phosphorylation site-specific associations in cardiovascular disease. Circulation 126, 1803–1807 (2012).

    PubMed  Google Scholar 

  86. Zauber, H., Kirchner, M. & Selbach, M. Picky: a simple online PRM and SRM method designer for targeted proteomics. Nat. Methods 15, 156–157 (2018).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This project was funded by NIH grants 5R01GM088317 and 1R01GM111788 and NSF grant 1506752.

Author information

Authors and Affiliations

Authors

Contributions

H.A.A., A.B.I. and W.A.T. designed the studies. H.A.A., A.B.I. and I.-H.C. developed methods. H.A.A. performed the experiments and analyzed the data. H.A.A. and W.A.T. wrote the manuscript.

Corresponding author

Correspondence to W. Andy Tao.

Ethics declarations

Competing interests

A.B.I and W.A.T. are the co-founders of Tymora Analytical Operations, which commercialized a polyMAC kit used in parts of the described protocol.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Related links

Key references using this protocol

Chen, I.-H. et al. Proc. Natl. Acad. Sci. USA 114, 3175–3180 (2017): https://www.pnas.org/content/114/12/3175

Chen, I.-H. et al. Anal. Chem. 90, 6307–6313 (2018): https://pubs.acs.org/doi/10.1021/acs.analchem.8b01090

Wu X., Li, L., Iliuk, A. & Tao, W. A. J. Proteome Res. 17, 3308–3316 (2018): https://pubs.acs.org/doi/10.1021/acs.jproteome.8b00459

Integrated supplementary information

Supplementary Figure 1 Venn diagrams showing the overlap between the EV database from Vesiclepedia and EV data from control and breast cancer.

The Venn diagrams show a 77% overlap between both, the EV database and control EV proteins, and the EV database and EV breast cancer proteins. Overlap of the proteome from the control and the breast cancer EV data is also shown.

Supplementary Figure 2 Quantitation results from MaxQuant and Perseus showing Pearson correlations from proteome analysis across each condition and replicate.

Scatterplots and Pearson correlation coefficients depicting the log2-transformed intensities from proteome analysis of control and breast cancer samples, each in triplicate.

Supplementary Figure 3 Scatterplots representing the targeted proteomic (PRM) analysis.

Raw intensities from five individual control samples corresponding to five phosphopeptides from five EV proteins were plotted. See Table S1 for details.

Supplementary information

Supplementary Information

Supplementary Figs. 1–3 and Supplementary Tables 1 and 2.

Reporting Summary

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Andaluz Aguilar, H., Iliuk, A.B., Chen, IH. et al. Sequential phosphoproteomics and N-glycoproteomics of plasma-derived extracellular vesicles. Nat Protoc 15, 161–180 (2020). https://doi.org/10.1038/s41596-019-0260-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41596-019-0260-5

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research