Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Brief Communication
  • Published:

Structural basis for CaVα2δ:gabapentin binding

Abstract

Gabapentinoid drugs for pain and anxiety act on the CaVα2δ-1 and CaVα2δ-2 subunits of high-voltage-activated calcium channels (CaV1s and CaV2s). Here we present the cryo-EM structure of the gabapentin-bound brain and cardiac CaV1.2/CaVβ3/CaVα2δ-1 channel. The data reveal a binding pocket in the CaVα2δ-1 dCache1 domain that completely encapsulates gabapentin and define CaVα2δ isoform sequence variations that explain the gabapentin binding selectivity of CaVα2δ-1 and CaVα2δ-2.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Structure of the CaV1.2(ΔC)/CaVβ3/Cavα2δ-1:GBP complex.
Fig. 2: Comparison of CaVα2δ-1 GBP-binding sites.

Similar content being viewed by others

Data availability

Cav1.2(ΔC)/Cavβ3/Cavα2δ-1:GBP coordinates and maps (PDB 8FD7, EMD-29004, EMD-29007 and EMD-29015) and the map of the EMC:Cav1.2(ΔC)/Cavβ3 complex (EMD-29006) are deposited with the RCSB and EMDB. Requests for materials should be addressed to D.L.M.

References

  1. Dooley, D. J., Taylor, C. P., Donevan, S. & Feltner, D. Ca2+ channel α2δ ligands: novel modulators of neurotransmission. Trends Pharmacol. Sci. 28, 75–82 (2007).

    Article  CAS  PubMed  Google Scholar 

  2. Taylor, C. P., Angelotti, T. & Fauman, E. Pharmacology and mechanism of action of pregabalin: the calcium channel α2-δ (α2-δ) subunit as a target for antiepileptic drug discovery. Epilepsy Res. 73, 137–150 (2007).

    Article  CAS  PubMed  Google Scholar 

  3. Field, M. J. et al. Identification of the α2-δ-1 subunit of voltage-dependent calcium channels as a molecular target for pain mediating the analgesic actions of pregabalin. Proc. Natl Acad. Sci. USA 103, 17537–17542 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Domon, Y. et al. Binding characteristics and analgesic effects of Mirogabalin, a novel ligand for the α2δ subunit of voltage-gated calcium channels. J. Pharmacol. Exp. Ther. 365, 573–582 (2018).

    Article  CAS  PubMed  Google Scholar 

  5. Kato, J., Inoue, T., Yokoyama, M. & Kuroha, M. A review of a new voltage-gated Ca2+ channel α2δ ligand, mirogabalin, for the treatment of peripheral neuropathic pain. Expert Opin. Pharmacother. 22, 2311–2322 (2021).

    Article  CAS  PubMed  Google Scholar 

  6. Gee, N. S. et al. The novel anticonvulsant drug, gabapentin (Neurontin), binds to the α2δ subunit of a calcium channel. J. Biol. Chem. 271, 5768–5776 (1996).

    Article  CAS  PubMed  Google Scholar 

  7. Bauer, C. S. et al. The increased trafficking of the calcium channel subunit α2δ-1 to presynaptic terminals in neuropathic pain is inhibited by the α2δ ligand pregabalin. J. Neurosci. 29, 4076–4088 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Cassidy, J. S., Ferron, L., Kadurin, I., Pratt, W. S. & Dolphin, A. C. Functional exofacially tagged N-type calcium channels elucidate the interaction with auxiliary α2δ-1 subunits. Proc. Natl Acad. Sci. USA 111, 8979–8984 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Marais, E., Klugbauer, N. & Hofmann, F. Calcium channel α2δ subunits-structure and Gabapentin binding. Mol. Pharmacol. 59, 1243–1248 (2001).

    Article  CAS  PubMed  Google Scholar 

  10. Qin, N., Yagel, S., Momplaisir, M. L., Codd, E. E. & D’Andrea, M. R. Molecular cloning and characterization of the human voltage-gated calcium channel α2δ-4 subunit. Mol. Pharmacol. 62, 485–496 (2002).

    Article  CAS  PubMed  Google Scholar 

  11. Meyer, J. O. & Dolphin, A. C. Rab11-dependent recycling of calcium channels is mediated by auxiliary subunit α2δ-1 but not α2δ-3. Sci. Rep. 11, 10256 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Tran-Van-Minh, A. & Dolphin, A. C. The α2δ ligand gabapentin inhibits the Rab11-dependent recycling of the calcium channel subunit α2δ-2. J. Neurosci. 30, 12856–12867 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Chen, Z. et al. EMC holdase:CaV1.2/CaVβ3 complex and CaV1.2 channel structures reveal CaV assembly and drug binding mechanisms. Preprint at bioRxiv https://doi.org/10.1101/2022.10.03.510667 (2022).

  14. Zamponi, G. W., Striessnig, J., Koschak, A. & Dolphin, A. C. The physiology, pathology and pharmacology of voltage-gated calcium channels and their future therapeutic potential. Pharm. Rev. 67, 821–870 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Nanou, E. & Catterall, W. A. Calcium channels, synaptic plasticity and neuropsychiatric disease. Neuron 98, 466–481 (2018).

    Article  CAS  PubMed  Google Scholar 

  16. Buraei, Z. & Yang, J. The β subunit of voltage-gated Ca2+ channels. Physiol. Rev. 90, 1461–1506 (2010).

    Article  CAS  PubMed  Google Scholar 

  17. Dolphin, A. C. Voltage-gated calcium channels and their auxiliary subunits: physiology and pathophysiology and pharmacology. J. Physiol. 594, 5369–5390 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Brown, J. P., Dissanayake, V. U., Briggs, A. R., Milic, M. R. & Gee, N. S. Isolation of the [3H]gabapentin-binding protein/α2δ Ca2+ channel subunit from porcine brain: development of a radioligand binding assay for α2δ subunits using [3H]leucine. Anal. Biochem. 255, 236–243 (1998).

    Article  CAS  PubMed  Google Scholar 

  19. Dolphin, A. C. Calcium channel auxiliary α2δ and β subunits: trafficking and one step beyond. Nat. Rev. Neurosci. 13, 542–555 (2012).

    Article  CAS  PubMed  Google Scholar 

  20. David, D. J., Donovan, C. M., Meder, W. P. & Whetzel, S. Z. Preferential action of gabapentin and pregabalin at P/Q-type voltage-sensitive calcium channels: inhibition of K+-evoked [3H]-norepinephrine release from rat neocortical slices. Synapse 45, 171–190 (2002).

    Article  Google Scholar 

  21. Anantharaman, V. & Aravind, L. Cache—a signaling domain common to animal Ca2+-channel subunits and a class of prokaryotic chemotaxis receptors. Trends Biochem. Sci. 25, 535–537 (2000).

    Article  CAS  PubMed  Google Scholar 

  22. Jonikas, M. C. et al. Comprehensive characterization of genes required for protein folding in the endoplasmic reticulum. Science 323, 1693–1697 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Christianson, J. C. et al. Defining human ERAD networks through an integrative mapping strategy. Nat. Cell Biol. 14, 93–105 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  24. Hegde, R. S. The function, structure, and origins of the ER membrane protein complex. Annu. Rev. Biochem. 91, 651–678 (2022).

    Article  PubMed  Google Scholar 

  25. Wu, J. et al. Structure of the voltage-gated calcium channel Cav1.1 at 3.6 Å resolution. Nature 537, 191–196 (2016).

    Article  CAS  PubMed  Google Scholar 

  26. Yao, X., Gao, S. & Yan, N. Structural basis for pore blockade of human voltage-gated calcium channel Cav1.3 by motion sickness drug cinnarizine. Cell Res. 32, 946–948 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Gao, S., Yao, X. & Yan, N. Structure of human Cav2.2 channel blocked by the painkiller ziconotide. Nature 596, 143–147 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Gumerov, V. M. et al. Amino acid sensor conserved from bacteria to humans. Proc. Natl Acad. Sci. USA 119, e2110415119 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Canti, C. et al. The metal-ion-dependent adhesion site in the von Willebrand factor-A domain of α2δ subunits is key to trafficking voltage-gated Ca2+ channels. Proc. Natl Acad. Sci. USA 102, 11230–11235 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Wang, M., Offord, J., Oxender, D. L. & Su, T. Z. Structural requirement of the calcium-channel subunit α2δ for gabapentin binding. Biochem. J. 342, 313–320 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Oyama, M., Watanabe, S., Iwai, T. & Tanabe, M. Mirogabalin activates the descending noradrenergic system by binding to the α2δ-1 subunit of voltage-gated Ca2+ channels to generate analgesic effects. J. Pharm. Sci. 146, 33–39 (2021).

    Article  CAS  Google Scholar 

  32. Lotarski, S. et al. Anticonvulsant activity of pregabalin in the maximal electroshock-induced seizure assay in α2δ1 (R217A) and α2δ2 (R279A) mouse mutants. Epilepsy Res. 108, 833–842 (2014).

    Article  CAS  PubMed  Google Scholar 

  33. Lotarski, S. M. et al. Anxiolytic-like activity of pregabalin in the Vogel conflict test in α2δ-1 (R217A) and α2δ-2 (R279A) mouse mutants. J. Pharmacol. Exp. Ther. 338, 615–621 (2011).

    Article  CAS  PubMed  Google Scholar 

  34. Gavira, J. A. et al. How bacterial chemoreceptors evolve novel ligand specificities. mBio https://doi.org/10.1128/mBio.03066-19 (2020).

  35. Page, K. M., Gumerov, V. M., Dahimene, S., Zhulin, I. B. & Dolphin, A. C. The importance of cache domains in α2δ proteins and the basis for their gabapentinoid selectivity. Channels (Austin) 17, 2167563 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  36. Dahimene, S. et al. The α2δ-like protein Cachd1 increases N-type calcium currents and cell surface expression and competes with α2δ-1. Cell Rep. 25, 1610–1621 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Wallace, A. C., Laskowski, R. A. & Thornton, J. M. LIGPLOT: a program to generate schematic diagrams of protein-ligand interactions. Protein Eng. 8, 127–134 (1995).

    Article  CAS  PubMed  Google Scholar 

  38. Schmidt, T. G. & Skerra, A. The Strep-tag system for one-step purification and high-affinity detection or capturing of proteins. Nat. Protoc. 2, 1528–1535 (2007).

    Article  CAS  PubMed  Google Scholar 

  39. Liao, M., Cao, E., Julius, D. & Cheng, Y. Structure of the TRPV1 ion channel determined by electron cryo-microscopy. Nature 504, 107–112 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Goehring, A. et al. Screening and large-scale expression of membrane proteins in mammalian cells for structural studies. Nat. Protoc. 9, 2574–2585 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Lee, H., Lolicato, M., Arrigoni, C. & Minor, D. L. Jr Production of K2P2.1 (TREK-1) for structural studies. Methods Enzymol. 653, 151–188 (2021).

    Article  CAS  PubMed  Google Scholar 

  42. Shaya, D. et al. Voltage-gated sodium channel (NaV) protein dissection creates a set of functional pore-only proteins. Proc. Natl Acad. Sci. USA 108, 12313–12318 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Mastronarde, D. N. Automated electron microscope tomography using robust prediction of specimen movements. J. Struct. Biol. 152, 36–51 (2005).

    Article  PubMed  Google Scholar 

  44. Punjani, A., Rubinstein, J. L., Fleet, D. J. & Brubaker, M. A. cryoSPARC: algorithms for rapid unsupervised cryo-EM structure determination. Nat. Methods 14, 290–296 (2017).

    Article  CAS  PubMed  Google Scholar 

  45. Zivanov, J. et al. New tools for automated high-resolution cryo-EM structure determination in RELION-3. eLife 7, e42166 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  46. Liebschner, D. et al. Macromolecular structure determination using X-rays, neutrons and electrons: recent developments in Phenix. Acta Crystallogr. D Struct. Biol. 75, 861–877 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Emsley, P., Lohkamp, B., Scott, W. G. & Cowtan, K. Features and development of Coot. Acta Crystallogr. D 66, 486–501 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Moriarty, N. W., Grosse-Kunstleve, R. W. & Adams, P. D. Electronic Ligand Builder and Optimization Workbench (eLBOW): a tool for ligand coordinate and restraint generation. Acta Crystallogr. D 65, 1074–1080 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Williams, C. J. et al. MolProbity: more and better reference data for improved all-atom structure validation. Protein Sci. 27, 293–315 (2018).

    Article  CAS  PubMed  Google Scholar 

  50. Pettersen, E. F. et al. UCSF ChimeraX: structure visualization for researchers, educators and developers. Protein Sci. 30, 70–82 (2021).

    Article  CAS  PubMed  Google Scholar 

  51. Laskowski, R. A. & Swindells, M. B. LigPlot+: multiple ligand-protein interaction diagrams for drug discovery. J. Chem. Inf. Model. 51, 2778–2786 (2011).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank D. Bulkley for technical help and K. Brejc for comments on the manuscript. This work was supported by grant no. NIH R01 HL080050 to D.L.M.

Author information

Authors and Affiliations

Authors

Contributions

Z.C., A.M. and D.L.M. conceived the study and designed the experiments. Z.C. expressed and characterized the samples. Z.C. and A.M. collected and analyzed the cryo-EM data. Z.C. and A.M. built and refined the atomic models. D.L.M. analyzed data and provided guidance and support. Z.C., A.M. and D.L.M. wrote the paper.

Corresponding author

Correspondence to Daniel L. Minor Jr.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Structural & Molecular Biology thanks Rachelle Gaudet and the other, anonymous, reviewer(s) for their contribution to the peer review of this work. Primary Handling Editor: Katarzyna Ciazynska, in collaboration with the Nature Structural & Molecular Biology team. Peer reviewer reports are available.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data

Extended Data Fig. 1 CaV1.2(ΔC)/CaVβ3/CaVα2δ-1:GBP Cryo-EM analysis.

a, Exemplar CaV1.2(ΔC)/CaVβ3/CaVα2δ-1:GBP electron micrograph (~105,000x magnification) and 2D class averages. N = 3. b, Workflow for electron microscopy data processing for CaV1.2(ΔC)/CaVβ3/CaVα2δ-1:GBP sample. Initial cryoSPARC-3.2 Ab initio reconstruction identified a population of particles containing the CaV1.2(ΔC)/CaVβ3/CaVα2δ-1 and EMC:CaV1.2(ΔC)/CaVβ3 complexes, similar to prior studies13. Red arrows indicate the two classes that were re-extracted, subjected to multiple rounds of 3D heterogeneous classification, and exported from cryoSPARC-3.2 for further 3D refinement in RELION-3.1. Particle subtraction was performed for both the refined maps in Relion-3.1 followed by 3D classification with single class and 3D refinement to get the final consensus maps. Multibody refinement was performed to enhance features of CaVα2δ-1, which was used for the CaV1.2(ΔC)/CaVβ3/CaVα2δ-1:GBP composite map. The composite map was used for model building and refinement.

Extended Data Fig. 2 CaV1.2(ΔC)/CaV β3/CaVα2δ-1:GBP map and model quality.

a, Particle distribution plot and gold-standard Fourier shell correlation (FSC) curve for the overall CaV1.2(ΔC)/CaV β3/CaVα2δ-1:GBP complex map and the extracellular map containing CaVα2δ-1:GBP. b, local resolution for the overall CaV1.2(ΔC)/CaV β3/CaVα2δ-1:GBP map and the extracellular map containing CaVα2δ-1:GBP. c, local B-factor for the overall CaV1.2(ΔC)/CaV β3/CaVα2δ-1:GBP model and the CaVα2δ-1:GBP subunit. d, Particle distribution plot and gold-standard Fourier shell correlation (FSC) curve for the EMC:CaV1.2(ΔC)/CaVβ3 complex from the CaV1.2(ΔC)/CaV β3/CaVα2δ-1:GBP sample. e, EMC:CaV1.2(ΔC)/CaVβ3 complex local resolution. Select elements of each complex are labeled.

Extended Data Fig. 3 CaV1.2(ΔC)/CaVβ3/CaVα2δ-1:GBP Cryo-EM maps.

a, CaV1.2(ΔC)/CaVβ3/CaVα2δ-1 side view (left) and extracellular (right) view. Subunits are colored: CaV1.2 (slate) and CaVβ3 (violet). CaVα2δ domains are colored as: dCache1 (aquamarine), dCache2 (orange), VWA:MIDAS (green), and CaVδ (yellow). Grey bars denote the membrane. b-e, CaVα2δ-1 subdomain representative maps for b, VWA:MIDAS domain, c, dCache1, d, dCache2:CaVδ. Part of CaVδ completes the second β-barrel subdomain of dCache2, e, CaVδ. f, GBP-binding site. Maps are rendered at 9–10σ. Domain colors are as in a.

Extended Data Fig. 4 CaVα2δ-1 GBP-binding site analysis and comparisons.

a, Superposition of the CaVα2δ-1:GBP (aquamarine) and CaVα2δ-1:L-Leu (orange) (PDB:8EOG)13 binding sites. GBP is red. L-Leu is purple. b and c, LigPLOT37 diagrams of the b, CaVα2δ-1:GBP (aquamarine) and c, CaVα2δ-1:L-Leu (orange) (PDB:8EOG)13 binding sites showing hydrogen bonds and ionic interactions (dashed lines) and van der Waals contacts ≤ 5 Å. GBP is red. L-Leu is purple. d, Superposition of the first dCache1 repeats from CaVα2δ-1:GBP (aquamarine) and the PctA:L-Ile complex (magenta) (PDB: 5T65)34. GBP is red. e,f, Closeup view of superposition from ‘d’ showing ligand contact residues. CaVα2δ-1 is shown as a cartoon. GBP is red. Corresponding sidechains of PctA are magenta. L-Ile form the PctA complex is pink. PctA residues are labeled in italics.

Supplementary information

Reporting Summary

Peer Review File

Supplementary Video 1

CaVα2δ-1 ligand binding site cryo-EM density comparison. Video shows superposition of maps for the CaVα2δ-1:GBP (13.9σ; clear) and CaVα2δ-1:L-Leu (7.5σ; orange) (EMD-28375)13, GBP (red) and L-Leu (purple) are shown as sticks.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, Z., Mondal, A. & Minor, D.L. Structural basis for CaVα2δ:gabapentin binding. Nat Struct Mol Biol 30, 735–739 (2023). https://doi.org/10.1038/s41594-023-00951-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41594-023-00951-7

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing