Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

SLIDE: Significant Latent Factor Interaction Discovery and Exploration across biological domains

Abstract

Modern multiomic technologies can generate deep multiscale profiles. However, differences in data modalities, multicollinearity of the data, and large numbers of irrelevant features make analyses and integration of high-dimensional omic datasets challenging. Here we present Significant Latent Factor Interaction Discovery and Exploration (SLIDE), a first-in-class interpretable machine learning technique for identifying significant interacting latent factors underlying outcomes of interest from high-dimensional omic datasets. SLIDE makes no assumptions regarding data-generating mechanisms, comes with theoretical guarantees regarding identifiability of the latent factors/corresponding inference, and has rigorous false discovery rate control. Using SLIDE on single-cell and spatial omic datasets, we uncovered significant interacting latent factors underlying a range of molecular, cellular and organismal phenotypes. SLIDE outperforms/performs at least as well as a wide range of state-of-the-art approaches, including other latent factor approaches. More importantly, it provides biological inference beyond prediction that other methods do not afford. Thus, SLIDE is a versatile engine for biological discovery from modern multiomic datasets.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: SLIDE—a novel interpretable machine learning method for Significant Latent Factor Interaction Discovery and Exploration.
Fig. 2: SLIDE uncovers novel interacting latent factors that explain SSc pathogenesis.
Fig. 3: SLIDE uncovers latent factors underlying immune cell partitioning by 3D localization in a murine model of asthma.
Fig. 4: SLIDE uncovers latent factors underlying spatial localizations and phenotypes from different spatial transcriptomic and proteomic modalities.
Fig. 5: SLIDE elucidates novel interacting latent factors underlying the clonal expansion of CD4 T cells in T1D.

Similar content being viewed by others

Data availability

All data including the SSc scRNA-seq, 10X Visium, Slide-seq, CD4 T cell scRNA-seq and TCR-seq datasets and associated documentation are available at https://github.com/jishnu-lab/SLIDE and at https://github.com/jishnu-lab/SLIDEpre. Corresponding stable releases are available at https://doi.org/10.5281/zenodo.10159961 and https://doi.org/10.5281/zenodo.10159957, respectively. The relevant datasets have also been deposited at the Gene Expression Omnibus (accession IDs: GSE245112 and GSE247410 for the spatial and T1D datasets, respectively). Source data are provided with this paper.

Code availability

All code and documentation is available at https://github.com/jishnu-lab/SLIDE and at https://github.com/jishnu-lab/SLIDEpre. Corresponding stable releases are available at https://doi.org/10.5281/zenodo.10159961 and https://doi.org/10.5281/zenodo.10159957, respectively.

References

  1. Altman, N. & Krzywinski, M. Regression diagnostics. Nat. Methods 13, 385–386 (2016).

    Article  CAS  Google Scholar 

  2. Peddireddy, S. P. et al. Antibodies targeting conserved non-canonical antigens and endemic coronaviruses associate with favorable outcomes in severe COVID-19. Cell Rep. 39, 111020 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Das, J. et al. Delayed fractional dosing with RTS,S/AS01 improves humoral immunity to malaria via a balance of polyfunctional NANP6- and Pf16-specific antibodies. Medicine 2, 1269–1286 e1269 (2021).

    Article  CAS  Google Scholar 

  4. Suscovich, T. J. et al. Mapping functional humoral correlates of protection against malaria challenge following RTS,S/AS01 vaccination. Sci. Transl. Med. 12, eab4757 (2020).

    Article  Google Scholar 

  5. Lu, L. L. et al. Antibody Fc glycosylation discriminates between latent and active tuberculosis. J. Infect. Dis. 13, 2093–2102 (2020).

    Article  Google Scholar 

  6. Ackerman, M. E. et al. Route of immunization defines multiple mechanisms of vaccine-mediated protection against SIV. Nat. Med. 24, 1590–1598 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Das, J. et al. Mining for humoral correlates of HIV control and latent reservoir size. PLoS Pathog. 16, e1008868 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Li, S. et al. Molecular signatures of antibody responses derived from a systems biology study of five human vaccines. Nat. Immunol. 15, 195–204 (2014).

    Article  PubMed  Google Scholar 

  9. Vafaee, F. et al. A data-driven, knowledge-based approach to biomarker discovery: application to circulating microRNA markers of colorectal cancer prognosis. NPJ Syst. Biol. Appl 4, 20 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  10. Nakaya, H. I. et al. Systems biology of vaccination for seasonal influenza in humans. Nat. Immunol. 12, 786–795 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Bzdok, D., Altman, N. & Krzywinski, M. Statistics versus machine learning. Nat. Methods 15, 233–234 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Bing, X. et al. Essential regression: a generalizable framework for inferring causal latent factors from multi-omic datasets. Patterns 3, 100473 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Bing, X., Bunea, F., Royer, M. & Das, J. Latent model-based clustering for biological discovery. iScience 14, 125–135 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Barber, R. F. & Candés, E. J. Controlling the false discovery rate via knockoffs. Ann. Stat. 43, 2055–2085 (2015).

    Article  Google Scholar 

  15. Tabib, T. et al. Myofibroblast transcriptome indicates SFRP2hi fibroblast progenitors in systemic sclerosis skin. Nat. Commun. 12, 4384 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Stifano, G. et al. Skin gene expression is prognostic for the trajectory of skin disease in patients with diffuse cutaneous systemic sclerosis. Arthritis Rheumatol. 70, 912–919 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Nazari, B. et al. Altered dermal fibroblasts in systemic sclerosis display podoplanin and CD90. Am. J. Pathol. 186, 2650–2664 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Bhattacharyya, S. et al. Tenascin-C drives persistence of organ fibrosis. Nat. Commun. 7, 11703 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Rice, L. M. et al. A longitudinal biomarker for the extent of skin disease in patients with diffuse cutaneous systemic sclerosis. Arthritis Rheumatol. 67, 3004–3015 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Farina, G., Lafyatis, D., Lemaire, R. & Lafyatis, R. A four-gene biomarker predicts skin disease in patients with diffuse cutaneous systemic sclerosis. Arthritis Rheum. 62, 580–588 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Tibshirani, R. Regression shrinkage and selection via the lasso. J. R. Stat. Soc. Ser. B 58, 267–288 (1996).

    Article  Google Scholar 

  22. Boulesteix, A. L. & Strimmer, K. Partial least squares: a versatile tool for the analysis of high-dimensional genomic data. Brief. Bioinform. 8, 32–44 (2007).

    Article  CAS  PubMed  Google Scholar 

  23. Bair, E., Hastie, T., Paul, D. & Tibshirani, R. Prediction by supervised principal components. J. Am. Stat. Assoc. 101, 119–137 (2006).

    Article  CAS  Google Scholar 

  24. Xue, D. et al. Expansion of fcγ receptor IIIa-positive macrophages, Ficolin 1-positive monocyte-derived dendritic cells, and plasmacytoid dendritic cells associated with severe skin disease in systemic sclerosis. Arthritis Rheumatol. 74, 329–341 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Argelaguet, R. et al. MOFA+: a statistical framework for comprehensive integration of multi-modal single-cell data. Genome Biol. 21, 111 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  26. Moon, K. R. et al. Visualizing structure and transitions in high-dimensional biological data. Nat. Biotechnol. 37, 1482–1492 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Berkowitz, J. S. et al. Cell type-specific biomarkers of systemic sclerosis disease severity capture cell-intrinsic and cell-extrinsic circuits. Arthritis Rheumatol. 75, 1819–1830 (2023).

    Article  CAS  PubMed  Google Scholar 

  28. Gourh, P. et al. HLA and autoantibodies define scleroderma subtypes and risk in African and European Americans and suggest a role for molecular mimicry. Proc. Natl Acad. Sci. USA 117, 552–562 (2020).

    Article  CAS  PubMed  Google Scholar 

  29. Apostolidis, S. A. et al. Single cell RNA sequencing identifies HSPG2 and APLNR as markers of endothelial cell injury in systemic sclerosis skin. Front. Immunol. 9, 2191 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  30. Wu, M. et al. Identification of cadherin 11 as a mediator of dermal fibrosis and possible role in systemic sclerosis. Arthritis Rheumatol. 66, 1010–1021 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Khanna, D. et al. Tofacitinib blocks IFN-regulated biomarker genes in skin fibroblasts and keratinocytes in a systemic sclerosis trial. JCI Insight 7, e159566 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  32. Gregory, L. G. & Lloyd, C. M. Orchestrating house dust mite-associated allergy in the lung. Trends Immunol. 32, 402–411 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. He, K. et al. Blimp-1 is essential for allergen-induced asthma and Th2 cell development in the lung. J. Exp. Med. 217, e20190742 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Rodriques, S. G. et al. SLIDE-seq: a scalable technology for measuring genome-wide expression at high spatial resolution. Science 363, 1463–1467 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Zhang, M. et al. Spatially resolved cell atlas of the mouse primary motor cortex by MERFISH. Nature 598, 137–143 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Goltsev, Y. et al. Deep profiling of mouse splenic architecture with CODEX multiplexed imaging. Cell 174, 968–981 e915 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Zhang, X. & Kohl, J. A complex role for complement in allergic asthma. Expert Rev. Clin. Immunol. 6, 269–277 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Nobs, S. P. et al. PPARγ in dendritic cells and T cells drives pathogenic type-2 effector responses in lung inflammation. J. Exp. Med. 214, 3015–3035 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Lopez, R., Regier, J., Cole, M. B., Jordan, M. I. & Yosef, N. Deep generative modeling for single-cell transcriptomics. Nat. Methods 15, 1053–1058 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Blank, C. U. et al. Defining ‘T cell exhaustion’. Nat. Rev. Immunol. 19, 665–674 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Altin, J. A. et al. Ndfip1 mediates peripheral tolerance to self and exogenous antigen by inducing cell cycle exit in responding CD4+ T cells. Proc. Natl Acad. Sci. USA 111, 2067–2074 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Hu, Z. et al. Annexin A5 is essential for PKCθ translocation during T-cell activation. J. Biol. Chem. 295, 14214–14221 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Szabo, P. A. et al. Single-cell transcriptomics of human T cells reveals tissue and activation signatures in health and disease. Nat. Commun. 10, 4706 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Zakharov, P. N., Hu, H., Wan, X. & Unanue, E. R. Single-cell RNA sequencing of murine islets shows high cellular complexity at all stages of autoimmune diabetes. J. Exp. Med. 217, e20192362 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

J.D. was supported in part by NIAID DP2AI164325, NIAID R01AI170108 and NHGRI U01HG012041. The authors acknowledge support from the University of Pittsburgh Center for Research Computing through the high-performance computing resources provided. The authors acknowledge all members of the Das lab for helpful discussions.

Author information

Authors and Affiliations

Authors

Contributions

J.D. conceived of the project and supervised all aspects. X.B., F.B. and M.W. developed the theoretical foundations of the method. J.R., H.X., A.R. and A.B.I.R. implemented SLIDE. R.A.L. designed and assembled the SSc cohort; T.T. carried out the corresponding scRNA-seq experiments. A.V.J. designed the T1D scRNA-seq/TCR-seq experiments, which were executed by P.M.Z. A.C.P. designed the 10X Visium and Slide-seq experiments, which were carried out by K.H. J.D. designed all computational analyses which were carried out by J.R. and H.X. J.R., H.X. and J.D. interpreted results with inputs from R.A.L., A.V.J. and A.C.P. J.D., J.R. and H.X. wrote the manuscript with input from all authors.

Corresponding authors

Correspondence to Amanda C. Poholek, Alok V. Joglekar, Robert A. Lafyatis or Jishnu Das.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Methods thanks the anonymous reviewers for their contribution to the peer review of this work. Primary Handling editor: Madhura Mukhopadhyay, in collaboration with the Nature Methods team. Peer reviewer reports are available.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–6, Note 1 and Method.

Reporting Summary

Peer Review File

Source data

Source Data Fig. 2

Statistical source data for Fig. 2c,f–h,I–k.

Source Data Fig. 3

Statistical source data for Fig. 3c,f,h,g,j,m.

Source Data Fig. 4

Statistical source data for Fig. 4c,f,g,i,l.

Source Data Fig. 5

Statistical source data for Fig. 5c,g,h,k,l.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rahimikollu, J., Xiao, H., Rosengart, A. et al. SLIDE: Significant Latent Factor Interaction Discovery and Exploration across biological domains. Nat Methods 21, 835–845 (2024). https://doi.org/10.1038/s41592-024-02175-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41592-024-02175-z

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing