Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

A chemical probe to modulate human GID4 Pro/N-degron interactions

Abstract

The C-terminal to LisH (CTLH) complex is a ubiquitin ligase complex that recognizes substrates with Pro/N-degrons via its substrate receptor Glucose-Induced Degradation 4 (GID4), but its function and substrates in humans remain unclear. Here, we report PFI-7, a potent, selective and cell-active chemical probe that antagonizes Pro/N-degron binding to human GID4. Use of PFI-7 in proximity-dependent biotinylation and quantitative proteomics enabled the identification of GID4 interactors and GID4-regulated proteins. GID4 interactors are enriched for nucleolar proteins, including the Pro/N-degron-containing RNA helicases DDX21 and DDX50. We also identified a distinct subset of proteins whose cellular levels are regulated by GID4 including HMGCS1, a Pro/N-degron-containing metabolic enzyme. These data reveal human GID4 Pro/N-degron targets regulated through a combination of degradative and nondegradative functions. Going forward, PFI-7 will be a valuable research tool for investigating CTLH complex biology and facilitating development of targeted protein degradation strategies that highjack CTLH E3 ligase activity.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: PFI-7 binds in the substrate binding pocket of human GID4.
Fig. 2: PFI-7 cellular target engagement and selectivity.
Fig. 3: GID4-BioID2 in the presence and absence of proteasome inhibition.
Fig. 4: GID4-BioID2 in the presence and absence of PFI-7.
Fig. 5: PFI-7 treatment alters the proteome of GID4-BioID2 HeLa cells.
Fig. 6: GID4- and PFI-7-dependent changes in RNA helicases and HMGCS1.

Similar content being viewed by others

Data availability

The mass spectrometry data have been deposited to the ProteomeXchange Consortium via the PRIDE partner repository with the dataset identifier PXD038487. The mass spectrometry data of the chemoproteomics experiment have been deposited to the ProteomeXchange Consortium via the PRIDE partner repository with the dataset identifier PXD044977. The structure of PFI-7 bound to GID4 was deposited to the PDB with accession number 7SLZ. Source data are provided with this paper.

Code availability

R scripts for analysis of proteomics data are freely available at https://github.com/d0minicO/GID4_analysis.

References

  1. Varshavsky, A. The ubiquitin system, autophagy, and regulated protein degradation. Annu. Rev. Biochem. 86, 123–128 (2017).

    Article  CAS  PubMed  Google Scholar 

  2. Varshavsky, A. N-degron and C-degron pathways of protein degradation. Proc. Natl Acad. Sci. USA 116, 358–366 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Sherpa, D., Chrustowicz, J. & Schulman, B. A. How the ends signal the end: regulation by E3 ubiquitin ligases recognizing protein termini. Mol. Cell 82, 1424–1438 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Mészáros, B., Kumar, M., Gibson, T. J., Uyar, B. & Dosztányi, Z. Degrons in cancer. Sci. Signal 10, eaak9982 (2017).

    Article  PubMed  Google Scholar 

  5. Rechsteiner, M. & Rogers, S. W. PEST sequences and regulation by proteolysis. Trends Biochem. Sci. 21, 267–271 (1996).

    Article  CAS  PubMed  Google Scholar 

  6. Collins, G. A. & Goldberg, A. L. The logic of the 26S proteasome. Cell 169, 792–806 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Gonda, D. K. et al. Universality and structure of the N-end rule. J. Biol. Chem. 264, 16700–16712 (1989).

    Article  CAS  PubMed  Google Scholar 

  8. Schapira, M., Calabrese, M. F., Bullock, A. N. & Crews, C. M. Targeted protein degradation: expanding the toolbox. Nat. Rev. Drug Discov. 18, 949–963 (2019).

    Article  CAS  PubMed  Google Scholar 

  9. Chen, S.-J., Wu, X., Wadas, B., Oh, J.-H. & Varshavsky, A. An N-end rule pathway that recognizes proline and destroys gluconeogenic enzymes. Science 355, eaal3655 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  10. Hämmerle, M. et al. Proteins of newly isolated mutants and the amino-terminal proline are essential for ubiquitin-proteasome-catalyzed catabolite degradation of fructose-1,6-bisphosphatase of Saccharomyces cerevisiae. J. Biol. Chem. 273, 25000–25005 (1998).

    Article  PubMed  Google Scholar 

  11. Dong, C. et al. Molecular basis of GID4-mediated recognition of degrons for the Pro/N-end rule pathway article. Nat. Chem. Biol. 14, 466–473 (2018).

    Article  CAS  PubMed  Google Scholar 

  12. Santt, O. et al. The yeast GID complex, a novel ubiquitin ligase (E3) involved in the regulation of carbohydrate metabolism. Mol. Biol. Cell 19, 3323–3333 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Francis, O., Han, F. & Adams, J. C. Molecular phylogeny of a RING E3 ubiquitin ligase, conserved in eukaryotic cells and dominated by homologous components, the muskelin/RanBPM/CTLH complex. PLoS ONE 8, e75217 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Maitland, M. E. R., Lajoie, G. A., Shaw, G. S. & Schild-Poulter, C. Structural and functional insights into GID/CTLH E3 ligase complexes. Int. J. Mol. Sci. 23, 5863 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Melnykov, A., Chen, S.-J. & Varshavsky, A. Gid10 as an alternative N-recognin of the Pro/N-degron pathway. Proc. Natl Acad. Sci. USA 116, 15914–15923 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Qiao, S. et al. Interconversion between anticipatory and active GID E3 ubiquitin ligase conformations via metabolically driven substrate receptor assembly. Mol. Cell 77, 150–163.e9 (2020).

    Article  CAS  PubMed  Google Scholar 

  17. Kong, K.-Y. E. et al. Timer-based proteomic profiling of the ubiquitin-proteasome system reveals a substrate receptor of the GID ubiquitin ligase. Mol. Cell 81, 2460–2476.e11 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Mohamed, W. I. et al. The human GID complex engages two independent modules for substrate recruitment. EMBO Rep. 22, e52981 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Huffman, N., Palmieri, D. & Coppola, V. The CTLH complex in cancer cell plasticity. J. Oncol. 2019, 4216750 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  20. Lampert, F. et al. The multi-subunit GID/CTLH E3 ubiquitin ligase promotes cell proliferation and targets the transcription factor Hbp1 for degradation. eLife 7, e35528 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  21. Leal-Esteban, L. C., Rothé, B., Fortier, S., Isenschmid, M. & Constam, D. B. Role of bicaudal C1 in renal gluconeogenesis and its novel interaction with the CTLH complex. PLoS Genet. 14, e1007487 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  22. Maitland, M. E. R. et al. The mammalian CTLH complex is an E3 ubiquitin ligase that targets its subunit muskelin for degradation. Sci. Rep. 9, 9864 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  23. Zhen, R. et al. Wdr26 regulates nuclear condensation in developing erythroblasts. Blood 135, 208–219 (2020).

    Article  PubMed  Google Scholar 

  24. McTavish, C. et al. Regulation of c-Raf stability through the CTLH Complex. Int. J. Mol. Sci. 20, 934 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Maitland, M. E. R., Kuljanin, M., Wang, X., Lajoie, G. A. & Schild-Poulter, C. Proteomic analysis of ubiquitination substrates reveals a CTLH E3 ligase complex-dependent regulation of glycolysis. FASEB J. 35, e21825 (2021).

    Article  CAS  PubMed  Google Scholar 

  26. Dong, C. et al. Recognition of nonproline N-terminal residues by the Pro/N-degron pathway. Proc. Natl Acad. Sci. USA 117, 14158–14167 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Chrustowicz, J. et al. Multifaceted N-degron recognition and ubiquitylation by GID/CTLH E3 ligases. J. Mol. Biol. 434, 167347 (2022).

    Article  CAS  PubMed  Google Scholar 

  28. Oughtred, R. et al. The BioGRID database: a comprehensive biomedical resource of curated protein, genetic, and chemical interactions. Protein Sci. 30, 187–200 (2021).

    Article  CAS  PubMed  Google Scholar 

  29. Chana, C. K. et al. Discovery and structural characterization of small molecule binders of the human CTLH E3 ligase subunit GID4. J. Med. Chem. 65, 12725–12746 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Yazdi, A. K. et al. Chemical tools for the Gid4 subunit of the human E3 ligase C-terminal to LisH (CTLH) degradation complex. RSC Med. Chem. 15, 1066–1071 (2024).

    Article  CAS  PubMed  Google Scholar 

  31. Sherpa, D. et al. GID E3 ligase supramolecular chelate assembly configures multipronged ubiquitin targeting of an oligomeric metabolic enzyme. Mol. Cell 81, 2445–2459.e13 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Coyaud, E. et al. BioID-based identification of Skp cullin F-box (SCF)β-TrCP1/2 E3 ligase substrates. Mol. Cell Proteomics 14, 1781–1795 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Go, C. D. et al. A proximity-dependent biotinylation map of a human cell. Nature 595, 120–124 (2021).

    Article  CAS  PubMed  Google Scholar 

  34. Arrowsmith, C. H. et al. The promise and peril of chemical probes. Nat. Chem. Biol. 11, 536–541 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Frye, S. V. The art of the chemical probe. Nat. Chem. Biol. 6, 159–161 (2010).

    Article  CAS  PubMed  Google Scholar 

  36. Blagg, J. & Workman, P. Choose and use your chemical probe wisely to explore cancer biology. Cancer Cell 32, 268–270 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Vu, V., Szewczyk, M. M., Nie, D. Y., Arrowsmith, C. H. & Barsyte-Lovejoy, D. Validating small molecule chemical probes for biological discovery. Annu. Rev. Biochem. 91, 61–87 (2022).

    Article  CAS  PubMed  Google Scholar 

  38. Huttlin, E. L. et al. Dual proteome-scale networks reveal cell-specific remodeling of the human interactome. Cell 184, 3022–3040.e28 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Cho, N. H. et al. OpenCell: endogenous tagging for the cartography of human cellular organization. Science 375, eabi6983 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Onea, G., Maitland, M. E. R., Wang, X., Lajoie, G. A. & Schild-Poulter, C. Distinct nuclear and cytoplasmic assemblies and interactomes of the mammalian CTLH E3 ligase complex. J. Cell Sci. 135, jcs259638 (2022).

    Article  CAS  PubMed  Google Scholar 

  41. Kim, D. I. et al. Probing nuclear pore complex architecture with proximity-dependent biotinylation. Proc. Natl Acad. Sci. USA 111, E2453–E2461 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Gingras, A.-C., Abe, K. T. & Raught, B. Getting to know the neighborhood: using proximity-dependent biotinylation to characterize protein complexes and map organelles. Curr. Opin. Chem. Biol. 48, 44–54 (2019).

    Article  CAS  PubMed  Google Scholar 

  43. Calo, E. et al. RNA helicase DDX21 coordinates transcription and ribosomal RNA processing. Nature 518, 249–253 (2015).

    Article  CAS  PubMed  Google Scholar 

  44. Zhang, Y., Forys, J. T., Miceli, A. P., Gwinn, A. S. & Weber, J. D. Identification of DHX33 as a mediator of rRNA synthesis and cell growth. Mol. Cell. Biol. 31, 4676–4691 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Gaspar, V. P. et al. Interactome analysis of KIN (Kin17) shows new functions of this protein. Curr. Issues Mol. Biol. 43, 767–781 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Chen, S.-J., Kim, L., Song, H. K. & Varshavsky, A. Aminopeptidases trim Xaa-Pro proteins, initiating their degradation by the Pro/N-degron pathway. Proc. Natl Acad. Sci. USA 118, e2115430118 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Mullen, P. J., Yu, R., Longo, J., Archer, M. C. & Penn, L. Z. The interplay between cell signalling and the mevalonate pathway in cancer. Nat. Rev. Cancer 16, 718–731 (2016).

  48. Hondele, M. et al. DEAD-box ATPases are global regulators of phase-separated organelles. Nature 573, 144–148 (2019).

    Article  CAS  PubMed  Google Scholar 

  49. Hansen, S. R., Aderounmu, A. M., Donelick, H. M. & Bass, B. L. Dicer’s helicase domain: a meeting place for regulatory proteins. Cold Spring Harb. Symp. Quant. Biol. 84, 185–193 (2019).

    Article  PubMed  Google Scholar 

  50. Gregory, R. I. et al. The Microprocessor complex mediates the genesis of microRNAs. Nature 432, 235–240 (2004).

    Article  CAS  PubMed  Google Scholar 

  51. Abdelhaleem, M., Maltais, L. & Wain, H. The human DDX and DHX gene families of putative RNA helicases. Genomics 81, 618–622 (2003).

    Article  CAS  PubMed  Google Scholar 

  52. Georges, A., Marcon, E., Greenblatt, J. & Frappier, L. Identification and characterization of USP7 targets in cancer cells. Sci. Rep. 8, 15833 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  53. Komander, D. & Rape, M. The ubiquitin code. Annu. Rev. Biochem. 81, 203–229 (2012).

    Article  CAS  PubMed  Google Scholar 

  54. Nguyen, A. T. et al. UBE2O remodels the proteome during terminal erythroid differentiation. Science 357, eaan0218 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  55. Mashtalir, N. et al. Autodeubiquitination protects the tumor suppressor BAP1 from cytoplasmic sequestration mediated by the atypical ubiquitin ligase UBE2O. Mol. Cell 54, 392–406 (2014).

    Article  CAS  PubMed  Google Scholar 

  56. Havugimana, P. C. et al. A census of human soluble protein complexes. Cell 150, 1068–1081 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Kabsch, W. XDS. Acta Crystallogr. Sect. D. 66, 125–132 (2010).

    Article  CAS  Google Scholar 

  58. Otwinowski, Z. & Minor, W. Processing of X-ray diffraction data collected in oscillation mode. Methods Enzymol. 276, 307–326 (1997).

    Article  CAS  PubMed  Google Scholar 

  59. McCoy, A. J. et al. Phaser crystallographic software. J. Appl. Crystallogr. 40, 658–674 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Murshudov, G. N., Vagin, A. A. & Dodson, E. J. Refinement of macromolecular structures by the maximum-likelihood method. Acta Crystallogr. Sec. D. 53, 240–255 (1997).

    Article  CAS  Google Scholar 

  61. Bricogne, G. et al. BUSTER v.2.9 (Global Phasing Ltd, 2010).

  62. Smart, O. S. et al. GRADE v.1.102 (Global Phasing Ltd, 2011).

  63. Emsley, P. & Cowtan, K. Coot: model-building tools for molecular graphics. Acta Crystallogr. D. Biol. Crystallogr. 60, 2126–2132 (2004).

    Article  PubMed  Google Scholar 

  64. Williams, C. J. et al. MolProbity: more and better reference data for improved all-atom structure validation. Protein Sci. 27, 293–315 (2018).

    Article  CAS  PubMed  Google Scholar 

  65. Gräslund, S., Savitsky, P. & Müller-Knapp, S. In vivo biotinylation of antigens in E. coli. Methods Mol. Biol. 1586, 337–344 (2017).

    Article  PubMed  Google Scholar 

  66. Schwalm, M. P. et al. A toolbox for the generation of chemical probes for baculovirus IAP repeat containing proteins. Front Cell Dev. Biol. 10, 886537 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  67. Rafiee, M.-R. et al. Protease-resistant streptavidin for interaction proteomics. Mol. Syst. Biol. 16, e9370 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Quast, J. P., Schuster, D. & Picotti, P. protti: an R package for comprehensive data analysis of peptide- and protein-centric bottom-up proteomics data. Bioinformatics Adv. 2, vbab041 (2021).

    Article  Google Scholar 

  69. Shannon, P. et al. Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res. 13, 2498–2504 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Durinck, S., Spellman, P. T., Birney, E. & Huber, W. Mapping identifiers for the integration of genomic datasets with the R/Bioconductor package biomaRt. Nat. Protoc. 4, 1184–1191 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Zhang, X. et al. Proteome-wide identification of ubiquitin interactions using UbIA-MS. Nat. Protoc. 13, 530–550 (2018).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by Mitacs Elevate Postdoctoral Fellowship to D.D.G.O., funding from the Canadian Institutes for Health Research (grant nos. MOP-142414 and PJT-169101 to C.S.-P.; FDN154328 to C.H.A.), Natural Sciences and Engineering Research Council of Canada grant nos. RGPIN-2021-02728 to J.M. and RGPIN-2021-03435 to D.B.L. and a Cancer Research Society grant no. 25418 to D.B.-L. M.P.S. is funded by the Deutsche Forschungsgemeinschaft CRC1430 (Project ID 424228829). V.R. and M.G. have received support from the EU/EFPIA/OICR/McGill/KTH/Diamond Innovative Medicines Initiative 2 Joint Undertaking (EUbOPEN grant no. 875510). We thank M. Robers and K. Riching from Promega for advising on the NanoBRET and target engagement assays. This research used resources of the Advanced Photon Source, a US Department of Energy (DOE) Office of Science user facility operated for the DOE Office of Science by Argonne National Laboratory under contract no. DE-AC02-06CH11357. Mass spectrometry analyses were performed on equipment funded by a grant from the Canada Foundation for Innovation to G.A.L. The Structural Genomics Consortium is a registered charity (no. 1097737) that receives funds from Bayer AG, Boehringer Ingelheim, Bristol Myers Squibb, Genentech, Genome Canada through the Ontario Genomics Institute (OGI-196), EU/EFPIA/OICR/McGill/KTH/Diamond Innovative Medicines Initiative 2 Joint Undertaking (EUbOPEN grant no. 875510), Janssen, Merck KGaA (also known as EMD in Canada and the United States), Pfizer and Takeda.

Author information

Authors and Affiliations

Authors

Contributions

M.E.R.M., D.D.G.O., X.W., E.C.A., M.M.S., R.A.C.M., P.L., D.B.-L. and C.S.-P. designed and performed cellular experiments. M.E.R.M. and G.A.L. designed and performed proteomic experiments. D.D.G.O. conducted proteomic data analysis. V.R. and M.G. designed, performed and analyzed the chemoproteomic experiments. N.B., M.P.S. and S.K. designed and performed GID4-tracer NanoBRET assay and generated NB716. A.K.Y. and M.V. designed and performed biophysical experiments. M.F.C., M.S.D., J.L., J.I.M., T.N.O., D.R.O., C.S. and F.W. designed and synthesized compounds. X.S., C.D., J.M. and A.D. performed crystallography studies and solved structures. C.H.A., M.V., J.M., D.B.-L., M.S., G.A.L. and C.S.-P. supervised research. C.H.A., D.B.-L., C.S.-P. and J.M. provided funding. C.H.A., D.B.-L., M.E.R.M. and D.D.G.O. wrote the manuscript.

Corresponding author

Correspondence to Cheryl H. Arrowsmith.

Ethics declarations

Competing interests

M.F.C., M.S.D., J.L., J.I.M., T.N.O., C.S., F.W. and D.R.O. are or were employees of Pfizer and some of the authors are shareholders in Pfizer Inc. After submission, D.D.G.O. became an employee of Amphista Therapeutics, a company that is developing targeted protein degradation therapeutic platforms. The remaining authors declare no competing interests.

Peer review

Peer review information

Nature Chemical Biology thanks Nico Dissmeyer, Chao Xu and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data

Extended Data Fig. 1 Enrichment profiling of NB716.

The volcano plot shows the proteins enriched by streptavidin affinity purification in the presence of NB716. GID4 is among the most highly enriched proteins. Many known interaction partners shown in blue are also highly enriched. The differential abundance was calculated and significance was determined using a two-tailed moderated t-test with multiple testing correction using the method of Benjamini-Hochberg. Data are from three independent experiments (n = 3).

Extended Data Fig. 2 Cytotoxic profile of PFI-7.

Cell growth curves for HCT116, HEK293T and U2OS cells treated with increasing concentrations of PFI-7 or PFI-E3H1 are shown over three days. Data are from three independent experiments (n = 3).

Extended Data Fig. 3 Characterization of GID4-BioID2 cell line.

a) Upper, schematic and Alphafold2 predicted structure of GID4-BioID2 fusion protein. Lower, partial CTLH complex structure (PDB 7NSC) showing GID4 C-terminal anchor interacting with ARMC8α (Ref. 31 – Sherpa et al, 2021). b) Immunoprecipitation experiments performed in HeLa cells. Left, HA-pull down of BioID2-GID4 fusion protein with immunoblotting to detect CTLH complex members. Right, immunoprecipitation of RanBP9 with immunoblotting to detect BioID2-GID4 (HA) and other CTLH complex members, *=heavy chain. Data are from one experiment (n = 1). c) Immunoblotting to detect BioID2-GID4 or BioID2 alone after doxycycline induction (top). Bottom, streptavidin-based detection of biotinylated proteins. Representative blot shown from one of five independent experiments (n = 5). d) Immunofluorescence imaging of HA in BioID2 and BioID2-GID4-expressing HeLa cells. HA signal is shown in red, DAPI is shown in blue. Representative images are shown from one of three independent experiments (n = 3). Scale bar: 20 µm. e) Nuclear and cytoplasmic fractionation of HeLa cells expressing BioID2-GID4 or HA-GID4 alone. Immunoblotting of Vinculin, SAP62, RanBP9, and HA is shown. Representative blot shown from one of two independent experiments (n = 23). f) Uniform Manifold Approximation and Projection (UMAP) analysis of proximity-dependent biotinylation samples. BioID2 and BioID2-GID4 cells are shown in gray and blue, respectively. MG132-treated samples are indicated as triangles, and samples treated with vehicle (DMSO) are shown as circles. UMAP was done on 196 high confidence GID4 interacting proteins (MG132 SP > 0.9). Data are from three independent experiments (n = 3, BioID2 + MG132) or four independent experiments (n = 4, BioID2 +DMSO, BioID2-GID4 + DMSO, BioID2-GID4 + MG132). g) Spectral counts of CTLH complex members detected in BioID2-GID4. Bar height represents mean and error bars indicate standard deviation. Data are from three independent experiments (n = 3, BioID2 + MG132) or four independent experiments (n = 4, BioID2 +DMSO, BioID2-GID4 + DMSO, BioID2-GID4 + MG132). h) Overlap between high confidence GID4 interactors and interactors of the CTLH complex present in the BioGRID database.

Source data

Extended Data Fig. 4 DDX50 and DDX21 association with GID4 and CTLH complex.

a) Immunoprecipitation of FLAG-GID4 in HEK293T cells expressing FLAG-GID4 treated with 1 µM PFI-7N or PFI-7 for 24 hours. Data are from two experiments (n = 2). b) Immunoprecipitation of RanBP9 in wild type (WT) and ARMC8 knock-out (ARMC8 KO) HeLa cells. Immunoblotting was done for DDX21/50, FLAG, RanBP9, Muskelin and ARMC8α. Data are from one experiment (n = 1). c) Confocal imaging analysis of U2OS cells transduced with a doxycycline inducible lentiviral expression vector coding for N terminally FLAG-tagged GID4. FLAG-GID4 expression was induced for 24 h and is shown in green, DDX21/50 (antibody recognizes both endogenous proteins) is shown in red, and DAPI is shown in blue. Scale bar represents 15 µm. Representative images are shown from four independent experiments. d) Quantification of fluorescence signal intensity over a cross section of cell nuclei. A rolling average with a window size of 8 was used to smooth data and maximum intensities were scaled to 1. One cell from each condition was quantified from one of four independent experiments.

Source data

Extended Data Fig. 5 Proteomic samples used and overlap with other datasets.

a) Proteomics samples with number of replicates and treatment conditions shown. Data are from four independent experiments (n = 4). These replicate numbers apply to all panels of the figure. b) Number of quantified proteins detected in each sample. Bar height represents mean values and error bars indicate standard deviation. N = 4 independent experiments. c) Protein abundances of CTLH complex members. Median-centered log2 intensities are shown, with blue dots indicating DMSO-treated samples and PFI-7-treated samples shown in red. Boxplot midline indicates median values, bounds of the box indicate 25th and 75th percentiles, and maxima and minima indicate the largest point above or below 1.5 * interquartile range. N = 4 independent experiments. d) Overlap between proteins significantly changed after PFI-7 treatment or GID4 overexpression and medium confidence GID4 interactors (SP > 0.6 in any condition), left. Right, PFI-7-dependent and GID4-dependent proteins overlap with Pro/N-degron-containing proteins. SP scores derived from N = 3 independent experiments in BioID2-GID4 data, protein abundance change significance derived from n = 4 independent expression proteomics experiments.

Supplementary information

Supplementary Information

Supplementary Figs. 1 and 2, Tables 1 and 2 and Note.

Reporting Summary

Supplementary Data 1–6

Proteomics data.

Supplementary Data 7

Unprocessed western blots for Supplementary Fig. 2.

Source data

Source Data Fig. 1

SPR and fluorescence polarization data.

Source Data Fig. 2

NanoBRET quantification of GID4 with Pro/N-degron, GID4-tracer titration and PFI-7 tracer competition.

Source Data Fig. 4

NanoBRET quantification of GID4 interaction with DDX21 and DDX50.

Source Data Fig. 6

Quantification of HMGCS1 levels by western blot after PFI-7 and cycloheximide treatments.

Source Data Fig. 6

Unprocessed western blots.

Source Data Extended Data Fig. 3

Unprocessed western blots.

Source Data Extended Data Fig. 4

Unprocessed western blots.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Owens, D.D.G., Maitland, M.E.R., Khalili Yazdi, A. et al. A chemical probe to modulate human GID4 Pro/N-degron interactions. Nat Chem Biol (2024). https://doi.org/10.1038/s41589-024-01618-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41589-024-01618-0

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing