Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Live-cell target engagement of allosteric MEKi on MEK–RAF/KSR–14-3-3 complexes

Abstract

The RAS–mitogen-activated protein kinase (MAPK) pathway includes KSR, RAF, MEK and the phospho-regulatory sensor 14-3-3. Specific assemblies among these components drive various diseases and likely dictate efficacy for numerous targeted therapies, including allosteric MEK inhibitors (MEKi). However, directly measuring drug interactions on physiological RAS–MAPK complexes in live cells has been inherently challenging to query and therefore remains poorly understood. Here we present a series of NanoBRET-based assays to quantify direct target engagement of MEKi on MEK1 and higher-order MEK1-bound complexes with ARAF, BRAF, CRAF, KSR1 and KSR2 in the presence and absence of 14-3-3 in living cells. We find distinct MEKi preferences among these complexes that can be compiled to generate inhibitor binding profiles. Further, these assays can report on the influence of the pathogenic BRAF-V600E mutant on MEKi binding. Taken together, these approaches can be used as a platform to screen for compounds intended to target specific complexes in the RAS–MAPK cascade.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Design of a NanoBRET assay to measure changes of MEKi binding in the presence of KSR and RAF binding partners.
Fig. 2: Calibration of the NanoBRET assay used to measure MEKi binding on a ternary MEK1–RAF/KSR–Tram-bo complex.
Fig. 3: Characterization of MEKi binding on MEK1 and MEK1–RAF family complexes.
Fig. 4: Development of a NanoBRET assay to measure MEKi binding within larger complexes involving 14-3-3.
Fig. 5: Characterization of MEKi binding in the presence of BRAF-V600E.

Similar content being viewed by others

Data availability

Atomic coordinates and structure factors have been deposited in the PDB under accession code 7UMB. Source data are provided with this paper.

References

  1. Simanshu, D. K. & Morrison, D. K. A structure is worth a thousand words: new insights for RAS and RAF regulation. Cancer Discov. 12, 899–912 (2022).

  2. Yaeger, R. & Corcoran, R. B. Targeting alterations in the RAF–MEK pathway. Cancer Discov. 9, 329–341 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Prior, I. A., Hood, F. E. & Hartley, J. L. The frequency of RAS mutations in cancer. Cancer Res. 80, 2969–2974 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Simanshu, D. K., Nissley, D. V. & McCormick, F. RAS proteins and their regulators in human disease. Cell 170, 17–33 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Lavoie, H. & Therrien, M. Regulation of RAF protein kinases in ERK signalling. Nat. Rev. Mol. Cell Biol. 16, 281–298 (2015).

    Article  CAS  PubMed  Google Scholar 

  6. Moore, A. R., Rosenberg, S. C., McCormick, F. & Malek, S. RAS-targeted therapies: is the undruggable drugged? Nat. Rev. Drug Discov. 19, 533–552 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Lito, P., Rosen, N. & Solit, D. B. Tumor adaptation and resistance to RAF inhibitors. Nat. Med. 19, 1401–1409 (2013).

    Article  CAS  PubMed  Google Scholar 

  8. Awad, M. M. et al. Acquired resistance to KRASG12C inhibition in cancer. N. Engl. J. Med. 384, 2382–2393 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Tanaka, N. et al. Clinical acquired resistance to KRASG12C inhibition through a novel KRAS switch-II pocket mutation and polyclonal alterations converging on RAS–MAPK reactivation. Cancer Discov. 11, 1913–1922 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Zhao, Y. et al. Diverse alterations associated with resistance to KRASG12C inhibition. Nature 599, 679–683 (2021).

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  11. Holderfield, M., Deuker, M. M., McCormick, F. & McMahon, M. Targeting RAF kinases for cancer therapy: BRAF-mutated melanoma and beyond. Nat. Rev. Cancer 14, 455–467 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Wagle, N. et al. MAP kinase pathway alterations in BRAF-mutant melanoma patients with acquired resistance to combined RAF/MEK inhibition. Cancer Discov. 4, 61–68 (2014).

    Article  CAS  PubMed  Google Scholar 

  13. Moriceau, G. et al. Tunable-combinatorial mechanisms of acquired resistance limit the efficacy of BRAF/MEK cotargeting but result in melanoma drug addiction. Cancer Cell 27, 240–256 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Long, G. V. et al. Increased MAPK reactivation in early resistance to dabrafenib/trametinib combination therapy of BRAF-mutant metastatic melanoma. Nat. Commun. 5, 5694 (2014).

    Article  CAS  PubMed  ADS  Google Scholar 

  15. Samatar, A. A. & Poulikakos, P. I. Targeting RAS–ERK signalling in cancer: promises and challenges. Nat. Rev. Drug Discov. 13, 928–942 (2014).

    Article  CAS  PubMed  Google Scholar 

  16. Park, E. et al. Architecture of autoinhibited and active BRAF–MEK1–14-3-3 complexes. Nature 575, 545–550 (2019).

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  17. Tran, T. H. et al. KRAS interaction with RAF1 RAS-binding domain and cysteine-rich domain provides insights into RAS-mediated RAF activation. Nat. Commun. 12, 1176 (2021).

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  18. Martinez Fiesco, J. A., Durrant, D. E., Morrison, D. K. & Zhang, P. Structural insights into the BRAF monomer-to-dimer transition mediated by RAS binding. Nat. Commun. 13, 486 (2022).

  19. Poulikakos, P. I., Zhang, C., Bollag, G., Shokat, K. M. & Rosen, N. RAF inhibitors transactivate RAF dimers and ERK signalling in cells with wild-type BRAF. Nature 464, 427–430 (2010).

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  20. Hatzivassiliou, G. et al. RAF inhibitors prime wild-type RAF to activate the MAPK pathway and enhance growth. Nature 464, 431–435 (2010).

    Article  CAS  PubMed  ADS  Google Scholar 

  21. Liau, N. P. D. et al. Negative regulation of RAF kinase activity by ATP is overcome by 14-3-3-induced dimerization. Nat. Struct. Mol. Biol. 27, 134–141 (2020).

    Article  CAS  PubMed  Google Scholar 

  22. Liau, N. P. D. et al. Dimerization induced by C-terminal 14-3-3 binding is sufficient for BRAF kinase activation. Biochemistry 59, 3982–3992 (2020).

    Article  CAS  PubMed  Google Scholar 

  23. Gonzalez-Del Pino, G. L. et al. Allosteric MEK inhibitors act on BRAF/MEK complexes to block MEK activation. Proc. Natl Acad. Sci. USA 118, e2107207118 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Tkacik, E. et al. Structure and RAF family kinase isoform selectivity of type II RAF inhibitors tovorafenib and naporafenib. J. Biol. Chem. 299, 104634 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Khan, Z. M. et al. Structural basis for the action of the drug trametinib at KSR-bound MEK. Nature 588, 509–514 (2020).

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  26. Robers, M. B. et al. Target engagement and drug residence time can be observed in living cells with BRET. Nat. Commun. 6, 10091 (2015).

    Article  CAS  PubMed  ADS  Google Scholar 

  27. Wells, C. I. et al. Quantifying CDK inhibitor selectivity in live cells. Nat. Commun. 11, 2743 (2020).

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  28. Robers, M. B. et al. Quantitative, real-time measurements of intracellular target engagement using energy transfer. Methods Mol. Biol. 1888, 45–71 (2019).

    Article  CAS  PubMed  Google Scholar 

  29. Chang, L., Ruiz, P., Ito, T. & Sellers, W. R. Targeting pan-essential genes in cancer: challenges and opportunities. Cancer Cell 39, 466–479 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Lavoie, H. et al. MEK drives BRAF activation through allosteric control of KSR proteins. Nature 554, 549–553 (2018).

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  31. Haling, J. R. et al. Structure of the BRAF–MEK complex reveals a kinase activity independent role for BRAF in MAPK signaling. Cancer Cell 26, 402–413 (2014).

    Article  CAS  PubMed  Google Scholar 

  32. Yoshida, T. et al. Identification and characterization of a novel chemotype MEK inhibitor able to alter the phosphorylation state of MEK1/2. Oncotarget 3, 1533–1545 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  33. Lito, P. et al. Disruption of CRAF-mediated MEK activation is required for effective MEK inhibition in KRAS mutant tumors. Cancer Cell 25, 697–710 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Poulikakos, P. I. et al. RAF inhibitor resistance is mediated by dimerization of aberrantly spliced BRAFV600E. Nature 480, 387–390 (2011).

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  35. Rajakulendran, T., Sahmi, M., Lefrançois, M., Sicheri, F. & Therrien, M. A dimerization-dependent mechanism drives RAF catalytic activation. Nature 461, 542–545 (2009).

    Article  CAS  PubMed  ADS  Google Scholar 

  36. Yuan, J. et al. The dimer-dependent catalytic activity of RAF family kinases is revealed through characterizing their oncogenic mutants. Oncogene 37, 5719–5734 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Jain, P. et al. CRAF gene fusions in pediatric low-grade gliomas define a distinct drug response based on dimerization profiles. Oncogene 36, 6348–6358 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Dhawan, N. S., Scopton, A. P. & Dar, A. C. Small molecule stabilization of the KSR inactive state antagonizes oncogenic RAS signalling. Nature 537, 112–116 (2016).

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  39. Yao, Z. et al. BRAF mutants evade ERK-dependent feedback by different mechanisms that determine their sensitivity to pharmacologic inhibition. Cancer Cell 28, 370–383 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Wan, P. T. C. et al. Mechanism of activation of the RAF–ERK signaling pathway by oncogenic mutations of B-RAF. Cell 116, 855–867 (2004).

    Article  CAS  PubMed  Google Scholar 

  41. Thevakumaran, N. et al. Crystal structure of a BRAF kinase domain monomer explains basis for allosteric regulation. Nat. Struct. Mol. Biol. 22, 37–43 (2015).

    Article  CAS  PubMed  Google Scholar 

  42. Cole, P. A., Grace, M. R., Phillips, R. S., Burn, P. & Walsh, C. T. The role of the catalytic base in the protein tyrosine kinase Csk. J. Biol. Chem. 270, 22105–22108 (1995).

    Article  CAS  PubMed  Google Scholar 

  43. Johnson, L. N., Noble, M. E. & Owen, D. J. Active and inactive protein kinases: structural basis for regulation. Cell 85, 149–158 (1996).

    Article  CAS  PubMed  Google Scholar 

  44. Hatzivassiliou, G. et al. Mechanism of MEK inhibition determines efficacy in mutant KRAS- versus BRAF-driven cancers. Nature 501, 232–236 (2013).

    Article  CAS  PubMed  ADS  Google Scholar 

  45. Hanrahan, A. J. & Solit, D. B. BRAF mutations: the discovery of allele- and lineage-specific differences. Cancer Res. 82, 12–14 (2022).

    Article  CAS  PubMed  Google Scholar 

  46. Solit, D. B. et al. BRAF mutation predicts sensitivity to MEK inhibition. Nature 439, 358–362 (2006).

    Article  CAS  PubMed  ADS  Google Scholar 

  47. Strub, T. et al. SIRT6 haploinsufficiency induces BRAFV600E melanoma cell resistance to MAPK inhibitors via IGF signalling. Nat. Commun. 9, 3440 (2018).

    Article  PubMed  PubMed Central  ADS  Google Scholar 

Download references

Acknowledgements

We gratefully acknowledge current and prior funding from the NIH, including R01CA227636, R01CA258736, R01CA256480 and R56AG066712, and the Mark Foundation for Cancer Research (20-030-ASP and 21-039-ASP). A.C.D. also thanks the Pershing-Square Sohn Cancer Research Alliance and Alex’s Lemonade Stand Foundation for Childhood Cancer. A.C. and W.M.M. were recipients of NIH 5T32CA078207 and F99/K00 CA212474 awards, respectively. L.H. was a recipient of 2T32CA78207. We acknowledge support to the Dar laboratory through MSK Core Grant P30 CA008748.

Author information

Authors and Affiliations

Authors

Contributions

W.M.M. and A.C.D. designed and conceived the study. W.M.M. conducted NanoBRET assays, characterized inhibitors and generated constructs and reagents. W.M.M. and Z.M.K. solved the X-ray crystal structure. A.C. conducted co-IP studies, and L.H. assisted with probe synthesis and characterization. W.M.M. and A.C.D. wrote the paper. A.C.D. supervised the research and is the primary contact for requests for materials.

Corresponding authors

Correspondence to William M. Marsiglia or Arvin C. Dar.

Ethics declarations

Competing interests

Mount Sinai has filed a patent (number 63/044,338) related to probes and assays described herein. A.C.D. is a founder, shareholder, advisory board member and consultant for Prometeo Therapeutics and Nested Therapeutics.

Peer review

Peer review information

Nature Chemical Biology thanks James Vasta and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data

Extended Data Fig. 1 Omit Maps and structural description of Tram-bo’s interactions at the KSR2-MEK1 interface.

Dotted lines in the zoomed in interface images indicate a distance between side-chains of 3.5 angstroms.

Extended Data Fig. 2 Tram-bo can form a ternary complex with MEK1 and BRAF/KSR1.

a, Co-IP experiment pulling down MEK-NL reveals that BRAF-FLAG and KSR-FLAG co-associate in the presence of Tram-bo. b, Co-IP experiment pulling down BRAF-FLAG or KSR1-FLAG reveals that MEK-NL co-associates in the presence of Tram-bo.

Source data

Extended Data Fig. 3 αG RAF/KSR interface mutants highlight assay specificity by reversing changes in MEKi apparent IC50 values.

a, Dose-response curves for MEK1-NL in the absence and presence of WT or αG RAF/KSR interface mutants using a DNA ratio of 0.1:1 μg/mL MEK-NL:RAF/KSR DNA. Each curve is the average of six biological replicates (n = 6) for WT co-expressions and three biological replicates (n = 3) for αG RAF/KSR interface mutants. Each biological replicate has at least one technical replicate. Fitted values are plotted in graphs below the dose-reponse curves. Error bars are the standard error of the mean. b, Same as a using a DNA ratio of 0.005:1 μg/mL MEK-NL:RAF/KSR DNA.

Source data

Extended Data Fig. 4 PD-Bo as a tracer to measure MEKi binding on MEK1.

a, Structures of PD-Bo and Tram-bo. b, PD-Bo binds worse to MEK1-NL and its ternary RAF/KSR complexes than Tram-bo. Each point represents one biological replicate (n = 3) with at least one technical replicate. Error bars are the standard error of the mean. c, Apparent IC50 values for MEKi appear more potent using PD-Bo than Tram-bo. Each point represents one biological replicate (n = 6 for Tram-bo experiments, and n = 3 for PD-Bo experiments) with at least one technical replicate. Error bars are the standard error of the mean. 0.005:1 μg/mL refers to the DNA transfection ratio of MEK-NL:RAF/KSR DNA.

Source data

Extended Data Fig. 5 Co-expression of all components of each 14-3-3-NL-MEK1-RAF/KSR complex are necessary to generate a strong BRET signal.

This signal can be disfavored via αG-helix mutations on each RAF/KSR. Each point of each curve represents the average of three biological replicates (n = 3; the BRAF condition had n = 4) with one technical replicate. Error bars represent the standard error of the mean.

Source data

Extended Data Fig. 6 Mutation of the 14-3-3 interacting residue on RAF/KSR affects its ability to associate with 14-3-3.

Each point of each curve represents the average of four biological replicates (n = 4) with one technical replicate. Error bars represent the standard error of the mean.

Source data

Extended Data Fig. 7 BRAF-V600E decreases the potency of MEKi binding through its enhanced catalytic activity.

a, Tram-bo binding affinity to MEK1-BRAF mutant ternary complexes. Tram-bo: 1-way ANOVA, MEK1-NL + BRAF-WT vs. MEK1-NL + BRAF-S365A/S729A adjusted P = 0.0013; 1-way ANOVA, MEK1-NL + BRAF-WT vs. MEK1-NL + BRAF-V600E/D576N adjusted P = 0.0015; 1-way ANOVA, MEK1-NL + BRAF-WT vs. MEK1-NL + BRAF-V600E/R509H adjusted P < 0.001;1-way ANOVA, MEK1-NL + BRAF-WT vs. MEK1-NL + BRAF-S365A/V600E/S729A adjusted P < 0.001. b, Apparent binding affinity values and dose-response curves for MEK1-BRAF mutant ternary complexes. For all experiments, dose-response curves are the average of three biological replicates (n = 3). Each curve was fitted separately to generate EC50/apparent IC50 values. Error bars represent the standard error of the mean. Asterisk meanings are as follows: *=p < 0.05, **=p < 0.01, ***=p < 0.001.

Source data

Supplementary information

Supplementary Information

Supplementary Figs. 1–10, Table 1 and Note for Pd-bo synthesis.

Reporting Summary

Supplementary Data 1

Source data for Supplementary Fig. 1.

Supplementary Data 2

Source data for Supplementary Fig. 2.

Supplementary Data 3

Source data for Supplementary Fig. 3.

Supplementary Data 4

Source data for Supplementary Fig. 4.

Supplementary Data 5

Source data for Supplementary Fig. 5.

Supplementary Data 6

Source data for Supplementary Fig. 6.

Supplementary Data 7

Source data for Supplementary Fig. 7.

Supplementary Data 8

Source data for Supplementary Fig. 8.

Supplementary Data 9

Source data for Supplementary Fig. 9.

Supplementary Data 10

Source data for Supplementary Fig. 10.

Source data

Source Data Fig. 2

Raw experimental BRET values.

Source Data Fig. 3

Raw experimental BRET values.

Source Data Fig. 4

Raw experimental BRET values.

Source Data Fig. 5

Raw experimental BRET values.

Source Data Extended Data Fig. 2

Unprocessed western blots.

Source Data Extended Data Fig. 3

Raw experimental BRET values.

Source Data Extended Data Fig. 4

Raw experimental BRET values.

Source Data Extended Data Fig. 5

Raw experimental BRET values.

Source Data Extended Data Fig. 6

Raw experimental BRET values.

Source Data Extended Data Fig. 7

Raw experimental BRET values.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Marsiglia, W.M., Chow, A., Khan, Z.M. et al. Live-cell target engagement of allosteric MEKi on MEK–RAF/KSR–14-3-3 complexes. Nat Chem Biol 20, 373–381 (2024). https://doi.org/10.1038/s41589-023-01454-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41589-023-01454-8

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing