Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Structural basis of 7SK RNA 5′-γ-phosphate methylation and retention by MePCE

Abstract

Among RNA 5′-cap structures, γ-phosphate monomethylation is unique to a small subset of noncoding RNAs, 7SK and U6 in humans. 7SK is capped by methylphosphate capping enzyme (MePCE), which has a second nonenzymatic role as a core component of the 7SK ribonuclear protein (RNP), an essential regulator of RNA transcription. We report 2.0- and 2.1-Å X-ray crystal structures of the human MePCE methyltransferase domain bound to S-adenosylhomocysteine (SAH) and uncapped or capped 7SK substrates, respectively. 7SK recognition is achieved by protein contacts to a 5′-hairpin-single-stranded RNA region, thus explaining MePCE’s specificity for 7SK and U6. The structures reveal SAH and product RNA in a near-transition-state geometry. Unexpectedly, binding experiments showed that MePCE has higher affinity for capped versus uncapped 7SK, and kinetic data support a model of slow product release. This work reveals the molecular mechanism of methyl transfer and 7SK retention by MePCE for subsequent assembly of 7SK RNP.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: MePCE binds and caps 7SK.
Fig. 2: Structural changes in MePCEMT upon binding RNA.
Fig. 3: Sequence- and structure-specific recognition of 7SK by MePCEMT.
Fig. 4: The active site of MePCEMT organizes the cofactor and triphosphate in near transition state.
Fig. 5: MePCEMT multiple-turnover kinetics and binding experiments reveal product and byproduct inhibition and retention.

Similar content being viewed by others

Data availability

Atomic coordinates and structure factors have been deposited in the Protein Data Bank under the following accession codes: PDB 6DCB (MePCE–SAH–7SK) and PDB 6DCC (MePCE–SAH–me7SK). All other data generated or analyzed in this study are included in the published article (and its supplementary information files) or are available from the corresponding author upon reasonable request.

References

  1. Byszewska, M., Śmietański, M., Purta, E. & Bujnicki, J. M. RNA methyltransferases involved in 5′ cap biosynthesis. RNA Biol. 11, 1597–1607 (2014).

  2. Schapira, M. Structural chemistry of human RNA methyltransferases. ACS Chem. Biol. 11, 575–582 (2016).

  3. Singh, R. & Reddy, R. Gamma-monomethyl phosphate: a cap structure in spliceosomal U6 small nuclear RNA. Proc. Natl Acad. Sci. USA 86, 8280–8283 (1989).

  4. Shumyatsky, G. P., Tillib, S. V. & Kramerov, D. A. B2 RNA and 7SK RNA, RNA polymerase III transcripts, have a cap-like structure at their 5′ end. Nucleic Acids Res. 18, 6347–6351 (1990).

    Article  CAS  Google Scholar 

  5. Shimba, S., Buckley, B., Reddy, R., Kiss, T. & Filipowicz, W. Cap structure of U3 small nucleolar RNA in animal and plant cells is different. gamma-monomethyl phosphate cap structure in plant RNA. J. Biol. Chem. 267, 13772–13777 (1992).

    CAS  PubMed  Google Scholar 

  6. Jeronimo, C. et al. Systematic analysis of the protein interaction network for the human transcription machinery reveals the identity of the 7SK capping enzyme. Mol. Cell 27, 262–274 (2007).

    Article  CAS  Google Scholar 

  7. Muniz, L., Egloff, S. & Kiss, T. RNA elements directing in vivo assembly of the 7SK/MePCE/Larp7 transcriptional regulatory snRNP. Nucleic Acids Res. 41, 4686–4698 (2013).

    Article  CAS  Google Scholar 

  8. Brogie, J. E. & Price, D. H. Reconstitution of a functional 7SK snRNP. Nucleic Acids Res. 45, 6864–6880 (2017).

    Article  CAS  Google Scholar 

  9. Xue, Y., Yang, Z., Chen, R. & Zhou, Q. A capping-independent function of MePCE in stabilizing 7SK snRNA and facilitating the assembly of 7SK snRNP. Nucleic Acids Res. 38, 360–369 (2010).

    Article  CAS  Google Scholar 

  10. Yang, Z., Zhu, Q., Luo, K. & Zhou, Q. The 7SK small nuclear RNA inhibits the CDK9/cyclin T1 kinase to control transcription. Nature 414, 317–322 (2001).

    Article  CAS  Google Scholar 

  11. Nguyen, V. T., Kiss, T., Michels, A. A. & Bensaude, O. 7SK small nuclear RNA binds to and inhibits the activity of CDK9/cyclin T complexes. Nature 414, 322–325 (2001).

    Article  CAS  Google Scholar 

  12. Kohoutek, J. P-TEFb: the final frontier. Cell. Div. 4, 19 (2009).

    Article  Google Scholar 

  13. Krueger, B. J. et al. LARP7 is a stable component of the 7SK snRNP while P-TEFb, HEXIM1 and hnRNP A1 are reversibly associated. Nucleic Acids Res. 36, 2219–2229 (2008).

    Article  CAS  Google Scholar 

  14. Markert, A. et al. The La-related protein LARP7 is a component of the 7SK ribonucleoprotein and affects transcription of cellular and viral polymerase II genes. EMBO Rep. 9, 569–575 (2008).

    Article  CAS  Google Scholar 

  15. He, N. et al. A La-related protein modulates 7SK snRNP integrity to suppress P-TEFb-dependent transcriptional elongation and tumorigenesis. Mol. Cell 29, 588–599 (2008).

    Article  CAS  Google Scholar 

  16. Michels, A. A. et al. Binding of the 7SK snRNA turns the HEXIM1 protein into a P-TEFb (CDK9/cyclin T) inhibitor. EMBO J. 23, 2608–2619 (2004).

    Article  CAS  Google Scholar 

  17. Muniz, L., Egloff, S., Ughy, B., Jády, B. E. & Kiss, T. Controlling cellular P-TEFb activity by the HIV-1 transcriptional transactivator Tat. PLoS Pathog. 6, e1001152 (2010).

  18. Wassarman, D. A. & Steitz, J. A. Structural analyses of the 7SK ribonucleoprotein (RNP), the most abundant human small RNP of unknown function. Mol. Cell. Biol. 11, 3432–3445 (1991).

    Article  CAS  Google Scholar 

  19. Marz, M. et al. Evolution of 7SK RNA and its protein partners in metazoa. Mol. Biol. Evol. 26, 2821–2830 (2009).

    Article  CAS  Google Scholar 

  20. Yazbeck, A. M., Tout, K. R. & Stadler, P. F. Detailed secondary structure models of invertebrate 7SK RNAs. RNA Biol. 15, 158–164 (2018).

  21. Uchikawa, E. et al. Structural insight into the mechanism of stabilization of the 7SK small nuclear RNA by LARP7. Nucleic Acids Res. 43, 3373–3388 (2015).

    Article  CAS  Google Scholar 

  22. Eichhorn, C. D., Chug, R. & Feigon, J. hLARP7 C-terminal domain contains an xRRM that binds the 3′ hairpin of 7SK RNA. Nucleic Acids Res. 44, 9977–9989 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Eichhorn, C. D., Yang, Y., Repeta, L. & Feigon, J. Structural basis for recognition of human 7SK long noncoding RNA by the La-related protein Larp7. Proc. Natl Acad. Sci. USA 115, E6457–E6466 (2018).

  24. Singh, R., Gupta, S. & Reddy, R. Capping of mammalian U6 small nuclear RNA in vitro is directed by a conserved stem-loop and AUAUAC sequence: conversion of a noncapped RNA into a capped RNA. Mol. Cell. Biol. 10, 939–946 (1990).

    Article  CAS  Google Scholar 

  25. Cosgrove, M. S., Ding, Y., Rennie, W. A., Lane, M. J. & Hanes, S. D. The Bin3 RNA methyltransferase targets 7SK RNA to control transcription and translation. Wiley Interdiscip. Rev. RNA 3, 633–647 (2012).

    Article  CAS  Google Scholar 

  26. Cheng, H., Sukal, S., Callender, R. & Leyh, T. S. γ-phosphate protonation and pH-dependent unfolding of the Ras.GTP.Mg2+ complex: a vibrational spectroscopy study. J. Biol. Chem. 276, 9931–9935 (2001).

    Article  CAS  Google Scholar 

  27. Copeland, R. A Enzymes: a Practical Introduction to Structure, Mechanism, and Data Analysis. 188–265 (John Wiley & Sons: New York, 2000).

  28. Husain, N. et al. Structural basis for the methylation of A1408 in 16S rRNA by a panaminoglycoside resistance methyltransferase NpmA from a clinical isolate and analysis of the NpmA interactions with the 30S ribosomal subunit. Nucleic Acids Res. 39, 1903–1918 (2011).

    Article  CAS  Google Scholar 

  29. Shi, Y. Q. & Rando, R. R. Kinetic mechanism of isoprenylated protein methyltransferase. J. Biol. Chem. 267, 9547–9551 (1992).

    CAS  PubMed  Google Scholar 

  30. Johnson, B. A. & Aswad, D. W. Kinetic properties of bovine brain protein L-isoaspartyl methyltransferase determined using a synthetic isoaspartyl peptide substrate. Neurochem. Res. 18, 87–94 (1993).

    Article  CAS  Google Scholar 

  31. Swiercz, R., Person, M. D. & Bedford, M. T. Ribosomal protein S2 is a substrate for mammalian PRMT3 (protein arginine methyltransferase 3). Biochem. J. 386, 85–91 (2005).

    Article  CAS  Google Scholar 

  32. Clarke, S. & Banfield, K. in Homocysteine in Health and Disease (eds. Carmel, R. & Jacobsen, D. W.) 63–78 (Cambridge University Press, Cambridge, 2001).

  33. Turner, D. H. & Mathews, D. H. NNDB: the nearest neighbor parameter database for predicting stability of nucleic acid secondary structure. Nucleic Acids Res. 38, D280–D282 (2010).

    Article  CAS  Google Scholar 

  34. Martinez, A. et al. Human BCDIN3D monomethylates cytoplasmic histidine transfer RNA. Nucleic Acids Res. 45, 5423–5436 (2017).

    Article  CAS  Google Scholar 

  35. Xhemalce, B., Robson, S. C. & Kouzarides, T. Human RNA methyltransferase BCDIN3D regulates microRNA processing. Cell 151, 278–288 (2012).

    Article  CAS  Google Scholar 

  36. Warda, A. S. et al. Human METTL16 is a N 6-methyladenosine (m6A) methyltransferase that targets pre-mRNAs and various non-coding RNAs. EMBO Rep. 18, 2004–2014 (2017).

    Article  CAS  Google Scholar 

  37. Pendleton, K. E. et al. The U6 snRNA m6A methyltransferase METTL16 regulates SAM synthetase intron retention. Cell 169, 824–835.e14 (2017).

    Article  CAS  Google Scholar 

  38. Choi, S., Jung, C.-R., Kim, J.-Y. & Im, D.-S. PRMT3 inhibits ubiquitination of ribosomal protein S2 and together forms an active enzyme complex. Biochim. Biophys. Acta 1780, 1062–1069 (2008).

    Article  CAS  Google Scholar 

  39. Didychuk, A. L., Butcher, S. E. & Brow, D. A. The life of U6 small nuclear RNA, from cradle to grave. RNA 24, 437–460 (2018).

    Article  CAS  Google Scholar 

  40. Hussain, R. H., Zawawi, M. & Bayfield, M. A. Conservation of RNA chaperone activity of the human La-related proteins 4, 6 and 7. Nucleic Acids Res. 41, 8715–8725 (2013).

    Article  CAS  Google Scholar 

  41. Bayfield, M. A., Yang, R. & Maraia, R. J. Conserved and divergent features of the structure and function of La and La-related proteins (LARPs). Biochim. Biophys. Acta 1799, 365–378 (2010).

    Article  CAS  Google Scholar 

  42. Maraia, R. J., Mattijssen, S., Cruz-Gallardo, I. & Conte, M. R. The La and related RNA-binding proteins (LARPs): structures, functions, and evolving perspectives. Wiley Interdiscip. Rev. RNA 8, e1430 (2017).

    Article  Google Scholar 

  43. McCoy, A. J. et al. Phaser crystallographic software. J. Appl. Crystallogr. 40, 658–674 (2007).

    Article  CAS  Google Scholar 

  44. Emsley, P. & Cowtan, K. Coot: model-building tools for molecular graphics. Acta Crystallogr. D. Biol. Crystallogr. 60, 2126–2132 (2004).

    Article  Google Scholar 

  45. Adams, P. D. et al. PHENIX: a comprehensive Python-based system for macromolecular structure solution. Acta Crystallogr. D. Biol. Crystallogr. 66, 213–221 (2010).

    Article  CAS  Google Scholar 

  46. Moriarty, N. W., Grosse-Kunstleve, R. W. & Adams, P. D. electronic Ligand Builder and Optimization Workbench (eLBOW): a tool for ligand coordinate and restraint generation. Acta Crystallogr. D. Biol. Crystallogr. 65, 1074–1080 (2009).

    Article  CAS  Google Scholar 

  47. Kabsch, W. Xds. Acta Crystallogr. D. Biol. Crystallogr. 66, 125–132 (2010).

    Article  CAS  Google Scholar 

  48. Painter, J. & Merritt, E. A. Optimal description of a protein structure in terms of multiple groups undergoing TLS motion. Acta Crystallogr. D. Biol. Crystallogr. 62, 439–450 (2006).

    Article  Google Scholar 

  49. Hodel, A., Kim, S.-H. & Brünger, A. T. Model bias in macromolecular crystal structures. Acta Crystallogr. A. 48, 851–858 (1992).

    Article  Google Scholar 

  50. Dolinsky, T. J. et al. PDB2PQR: expanding and upgrading automated preparation of biomolecular structures for molecular simulations. Nucleic Acids Res. 35, W522–W525 (2007).

    Article  Google Scholar 

  51. Baker, N. A., Sept, D., Joseph, S., Holst, M. J. & McCammon, J. A. Electrostatics of nanosystems: application to microtubules and the ribosome. Proc. Natl Acad. Sci. USA 98, 10037–10041 (2001).

  52. Delaglio, F. et al. NMRPipe: a multidimensional spectral processing system based on UNIX pipes. J. Biomol. NMR 6, 277–293 (1995).

    Article  CAS  Google Scholar 

  53. Lee, W., Tonelli, M. & Markley, J. L. NMRFAM-SPARKY: enhanced software for biomolecular NMR spectroscopy. Bioinformatics 31, 1325–1327 (2015).

    Article  Google Scholar 

  54. Grzesiek, S. & Bax, A. The importance of not saturating water in protein NMR. Application to sensitivity enhancement and NOE measurements. J. Am. Chem. Soc. 115, 12593–12594 (1993).

    Article  CAS  Google Scholar 

  55. Vinci, C. R. & Clarke, S. G. Recognition of age-damaged (R,S)-adenosyl-L-methionine by two methyltransferases in the yeast Saccharomyces cerevisiae. J. Biol. Chem. 282, 8604–8612 (2007).

  56. Shah, S. & Friedman, S. H. An ESI-MS method for characterization of native and modified oligonucleotides used for RNA interference and other biological applications. Nat. Protoc. 3, 351–356 (2008).

    Article  CAS  Google Scholar 

  57. Jain, K., Jin, C. Y. & Clarke, S. G. Epigenetic control via allosteric regulation of mammalian protein arginine methyltransferases. Proc. Natl Acad. Sci. USA 114, 10101–10106 (2017).

  58. Smietanski, M. et al. Structural analysis of human 2′-O-ribose methyltransferases involved in mRNA cap structure formation. Nat. Commun. 5, 3004 (2014).

    Article  Google Scholar 

  59. Papadopoulos, J. S. & Agarwala, R. COBALT: constraint-based alignment tool for multiple protein sequences. Bioinformatics 23, 1073–1079 (2007).

    Article  CAS  Google Scholar 

  60. Robert, X. & Gouet, P. Deciphering key features in protein structures with the new ENDscript server. Nucleic Acids Res. 42, W320–W324 (2014).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by NIH grant GM107567 to J.F. and American Cancer Society Postdoctoral Fellowship 126777-PF-14-179-01-DMC to C.D.E. We acknowledge NMR equipment grant NIH S10OD016336 and DOE grant DE-FC0302ER63421 for partial support of NMR and X-ray core facilities. The authors thank M. Capel, K. Rajashankar, N. Sukumar, F. Murphy, I. Kourinov, and J. Schuermann of Northeastern Collaborative Access Team (NE-CAT) beamline ID-24 at the Advanced Photon Source (APS) of Argonne National Laboratory, which are supported by NIH grants P41 RR015301 and P41 GM103403. Use of the APS is supported by DOE under contract DE-AC02-06CH11357. We thank Y. Chen for the help with mass spectrometry data collection and analysis in the UCLA MIC mass spectrometry facility, supported in part by NIH instrumentation grant 1S10OD016387; M. Collazo for help with crystal optimization; and K. Jain, J. Lowenson, and S. Clarke for helpful discussions.

Author information

Authors and Affiliations

Authors

Contributions

Y.Y. and C.D.E. designed and performed experiments, analyzed data, and wrote the paper; Y.W. prepared RNA samples; D.C. helped with X-ray data collection and processing; and J.F. supervised all aspects of the work, analyzed data, and wrote the paper.

Corresponding author

Correspondence to Juli Feigon.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Text and Figures

Supplementary Tables 1–3 and Supplementary Figures 1–14

Reporting Summary

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, Y., Eichhorn, C.D., Wang, Y. et al. Structural basis of 7SK RNA 5′-γ-phosphate methylation and retention by MePCE. Nat Chem Biol 15, 132–140 (2019). https://doi.org/10.1038/s41589-018-0188-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41589-018-0188-z

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing