Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Valleytronics in bulk MoS2 with a topologic optical field

Abstract

The valley degree of freedom1,2,3,4 of electrons in materials promises routes towards energy-efficient information storage with enticing prospects for quantum information processing5,6,7. Current challenges in utilizing valley polarization are symmetry conditions that require monolayer structures8,9 or specific material engineering10,11,12,13, non-resonant optical control to avoid energy dissipation and the ability to switch valley polarization at optical speed. We demonstrate all-optical and non-resonant control over valley polarization using bulk MoS2, a centrosymmetric material without Berry curvature at the valleys. Our universal method utilizes spin angular momentum-shaped trefoil optical control pulses14,15 to switch the material’s electronic topology and induce valley polarization by transiently breaking time and space inversion symmetry16 through a simple phase rotation. We confirm valley polarization through the transient generation of the second harmonic of a non-collinear optical probe pulse, depending on the trefoil phase rotation. The investigation shows that direct optical control over the valley degree of freedom is not limited to monolayer structures. Indeed, such control is possible for systems with an arbitrary number of layers and for bulk materials. Non-resonant valley control is universal and, at optical speeds, unlocks the possibility of engineering efficient multimaterial valleytronic devices operating on quantum coherent timescales.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Valley polarization in bulk MoS2 with a strong trefoil field.
Fig. 2: Pump–probe setup for valley control in bulk MoS2.
Fig. 3: Time-dependent optical control in bulk MoS2 induced by the trefoil field.
Fig. 4: Probing valley polarization in bulk MoS2.

Similar content being viewed by others

Data availability

All data supporting the study are available as source data and with the responding data processing scripts on https://github.com/jbiegert/ICFO-AUO-Valleytronics. All parameters necessary to reproduce the calculations are given in Methods and Supplementary Information. This information and ref. 16 provide the necessary details for a researcher to run IWERIA, or to develop a similar code. Further details on request.

Code availability

Three numerical codes were used in this work: Quantum Espresso40, Wannier90 (ref. 41) and IWERIA16. The first two are open-source and can be found at https://www.quantum-espresso.org/ and https://wannier.org/, respectively. IWERIA is an in-house code and parts of it relevant to reproducing the results of this work can be made available from the corresponding author upon request. All scripts can be found under https://github.com/jbiegert/ICFO-AUO-Valleytronics.

References

  1. Yao, W., Xiao, D. & Niu, Q. Valley-dependent optoelectronics from inversion symmetry breaking. Phys. Rev. B 77, 235406 (2008).

    Article  ADS  Google Scholar 

  2. Vitale, S. A. et al. Valleytronics: opportunities, challenges, and paths forward. Small 14, 1801483 (2018).

    Article  Google Scholar 

  3. Schaibley, J. R. et al. Valleytronics in 2D materials. Nat. Rev. Mater. 1, 16055 (2016).

    Article  ADS  CAS  Google Scholar 

  4. Liu, Y. et al. Valleytronics in transition metal dichalcogenides materials. Nano Res. 12, 2695–2711 (2019).

    Article  CAS  Google Scholar 

  5. Culcer, D., Saraiva, A. L., Koiller, B., Hu, X. & Das Sarma, S. Valley-based noise-resistant quantum computation using Si quantum dots. Phys. Rev. Lett. 108, 126804 (2012).

    Article  ADS  PubMed  Google Scholar 

  6. Rohling, N. & Burkard, G. Universal quantum computing with spin and valley states. New J. Phys. 14, 083008 (2012).

    Article  ADS  Google Scholar 

  7. Gunawan, O., Habib, B., De Poortere, E. P. & Shayegan, M. Quantized conductance in an AlAs two-dimensional electron system quantum point contact. Phys. Rev. B 74, 155436 (2006).

    Article  ADS  Google Scholar 

  8. Zeng, H., Dai, J., Yao, W., Xiao, D. & Cui, X. Valley polarization in MoS2 monolayers by optical pumping. Nat. Nanotechnol. 7, 490–493 (2012).

    Article  ADS  CAS  PubMed  Google Scholar 

  9. Mak, K. F., He, K., Shan, J. & Heinz, T. F. Control of valley polarization in monolayer MoS2 by optical helicity. Nat. Nanotechnol. 7, 494–498 (2012).

    Article  ADS  CAS  PubMed  Google Scholar 

  10. Song, Y., Zhai, F. & Guo, Y. Generation of a fully valley-polarized current in bulk graphene. Appl. Phys. Lett. 103, 183111 (2013).

    Article  ADS  Google Scholar 

  11. Yin, J. et al. Tunable and giant valley-selective Hall effect in gapped bilayer graphene. Science 375, 1398–1402 (2022).

    Article  ADS  CAS  PubMed  Google Scholar 

  12. Suzuki, R. et al. Valley-dependent spin polarization in bulk MoS2 with broken inversion symmetry. Nat. Nanotechnol. 9, 611–617 (2014).

    Article  ADS  CAS  PubMed  Google Scholar 

  13. Xia, J. et al. Valley polarization in stacked MoS2 induced by circularly polarized light. Nano Res. 10, 1618–1626 (2017).

    Article  CAS  Google Scholar 

  14. Milošević, D. B., Becker, W. & Kopold, R. Generation of circularly polarized high-order harmonics by two-color coplanar field mixing. Phys. Rev. A 61, 063403 (2000).

    Article  ADS  Google Scholar 

  15. Mitra, S. et al. Light-wave-controlled Haldane model in monolayer hexagonal boron nitride. Nature https://doi.org/10.1038/s41586-024-07244-z (2024).

  16. Jiménez-Galán, Á., Silva, R. E. F., Smirnova, O. & Ivanov, M. Lightwave control of topological properties in 2D materials for sub-cycle and non-resonant valley manipulation. Nat. Photon. 14, 728–732 (2020).

    Article  ADS  Google Scholar 

  17. Goulielmakis, E. et al. Attosecond control and measurement: lightwave electronics. Science 317, 769–775 (2007).

    Article  ADS  CAS  PubMed  Google Scholar 

  18. Garg, M. et al. Multi-petahertz electronic metrology. Nature 538, 359–363 (2016).

    Article  ADS  CAS  PubMed  Google Scholar 

  19. Mashiko, H., Oguri, K., Yamaguchi, T., Suda, A. & Gotoh, H. Petahertz optical drive with wide-bandgap semiconductor. Nat. Phys. 12, 741–745 (2016).

    Article  CAS  Google Scholar 

  20. Reimann, J. et al. Subcycle observation of lightwave-driven Dirac currents in a topological surface band. Nature 562, 396–400 (2018).

    Article  ADS  CAS  PubMed  Google Scholar 

  21. Baudisch, M. et al. Ultrafast nonlinear optical response of Dirac fermions in graphene. Nat. Commun. 9, 1–6 (2018).

    Article  CAS  Google Scholar 

  22. Cao, T. et al. Valley-selective circular dichroism of monolayer molybdenum disulphide. Nat. Commun. 3, 887 (2012).

    Article  ADS  PubMed  Google Scholar 

  23. Jones, A. M. et al. Optical generation of excitonic valley coherence in monolayer WSe2. Nat. Nanotechnol. 8, 634–638 (2013).

    Article  ADS  CAS  PubMed  Google Scholar 

  24. Gunlycke, D. & White, C. T. Graphene valley filter using a line defect. Phys. Rev. Lett. 106, 136806 (2011).

    Article  ADS  CAS  PubMed  Google Scholar 

  25. Xiao, D., Liu, G.-B., Feng, W., Xu, X. & Yao, W. Coupled spin and valley physics in monolayers of MoS2 and other group-VI dichalcogenides. Phys. Rev. Lett. 108, 196802 (2012).

    Article  ADS  PubMed  Google Scholar 

  26. Mrudul, M. S., Jiménez-Galán, Á., Ivanov, M. & Dixit, G. Light-induced valleytronics in pristine graphene. Optica 8, 422–427 (2021).

    Article  ADS  Google Scholar 

  27. Rivera, P. et al. Valley-polarized exciton dynamics in a 2D semiconductor heterostructure. Science 351, 688–691 (2016).

    Article  ADS  CAS  PubMed  Google Scholar 

  28. Holler, J. et al. Interlayer exciton valley polarization dynamics in large magnetic fields. Phys. Rev. B 105, 085303 (2022).

    Article  ADS  CAS  Google Scholar 

  29. Brandão, D. S. et al. Phonon-fostered valley polarization of interlayer excitons in van der Waals heterostructures. J. Phys. Chem. C 126, 18128–18138 (2022).

    Article  Google Scholar 

  30. Elu, U. et al. Seven-octave high-brightness and carrier-envelope-phase-stable light source. Nat. Photon. 15, 277–280 (2021).

    Article  ADS  CAS  Google Scholar 

  31. Ghimire, S. et al. Observation of high-order harmonic generation in a bulk crystal. Nat. Phys. 7, 138–141 (2011).

    Article  CAS  Google Scholar 

  32. You, Y. S., Reis, D. A. & Ghimire, S. Anisotropic high-harmonic generation in bulk crystals. Nat. Phys. 13, 345–349 (2017).

    Article  CAS  Google Scholar 

  33. Vampa, G. et al. Theoretical analysis of high-harmonic generation in solids. Phys. Rev. Lett. 113, 073901–073901 (2014).

    Article  ADS  CAS  PubMed  Google Scholar 

  34. Hohenleutner, M. et al. Real-time observation of interfering crystal electrons in high-harmonic generation. Nature 523, 572–575 (2015).

    Article  ADS  CAS  PubMed  Google Scholar 

  35. Luu, T. T. et al. Extreme ultraviolet high-harmonic spectroscopy of solids. Nature 521, 498–502 (2015).

    Article  ADS  CAS  PubMed  Google Scholar 

  36. Uzan, A. J. et al. Attosecond spectral singularities in solid-state high-harmonic generation. Nat. Photon. 14, 183–187 (2020).

    Article  ADS  CAS  Google Scholar 

  37. Heinrich, T. et al. Chiral high-harmonic generation and spectroscopy on solid surfaces using polarization-tailored strong fields. Nat. Commun. 12, 3723 (2021).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  38. Baykusheva, D. & Wörner, H. J. Chiral discrimination through bielliptical high-harmonic spectroscopy. Phys. Rev. X 8, 031060 (2018).

    CAS  Google Scholar 

  39. Klemke, N. et al. Polarization-state-resolved high-harmonic spectroscopy of solids. Nat. Commun. 10, 1319 (2019).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  40. Giannozzi, P. et al. QUANTUM ESPRESSO: a modular and open-source software project for quantum simulations of materials. J. Phys. Condens. Matter 21, 395502 (2009).

    Article  PubMed  Google Scholar 

  41. Pizzi, G. et al. Wannier90 as a community code: new features and applications. J. Phys. Condens. Matter 32, 165902 (2020).

    Article  ADS  CAS  PubMed  Google Scholar 

  42. Jiménez-Galán, Á., Zhavoronkov, N., Schloz, M., Morales, F. & Ivanov, M. Time-resolved high harmonic spectroscopy of dynamical symmetry breaking in bi-circular laser fields: the role of Rydberg states. Opt. Express 25, 22880 (2017).

    Article  ADS  PubMed  Google Scholar 

  43. Eichmann, H. et al. Polarization-dependent high-order two-color mixing. Phys. Rev. A 51, 3414–3417 (1995).

    Article  ADS  Google Scholar 

  44. Kong, F. et al. Spin-constrained orbital-angular-momentum control in high-harmonic generation. Phys. Rev. Res. 1, 032008 (2019).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

J.B. acknowledges financial support from the European Research Council for ERC Advanced Grant “TRANSFORMER” (788218), ERC Proof of Concept Grant “miniX” (840010), FET-OPEN “PETACom” (829153), FET-OPEN “OPTOlogic” (899794), FET-OPEN “TwistedNano” (101046424), Laserlab-Europe (871124), MINECO for Plan Nacional PID2020–112664GB-I00; AGAUR for SGR-2021-01449, MINECO for “Severo Ochoa” (CEX2019-000910-S), Fundació Cellex Barcelona, the CERCA Programme/Generalitat de Catalunya and the Alexander von Humboldt Foundation for the Friedrich Wilhelm Bessel Prize. I.T. and J.B. acknowledge support from Marie Skłodowska-Curie ITN “smart-X” (860553). A.J.-G. acknowledges support from the Comunidad de Madrid through the Talento Grant 2022-T1/IND-24102 and from the EU Marie Skłodowska-Curie Global Fellowship (101028938). R. S. acknowledges support from Grant No. PID2021-122769NB-I00 funded by MCIN/AEI and from the fellowship LCF/BQ/PR21/11840008 from “La Caixa” Foundation (ID 100010434). M.I. acknowledges support from FET-OPEN “OPTOlogic” (899794). M.I. also acknowledges the Limati SFB 1777 “Light–matter interaction at interfaces” project, award number 441234705. O.S. acknowledges funding from the European Union (ERC ULISSES, award number 101054696). We thank Ryo Mizuta Graphics for their 3D assets. We also thank U. Elu, M. Enders and L. Maidment for their assistance.

Author information

Authors and Affiliations

Authors

Contributions

J.B. conceived the project. I.T., J.P. and L.V. performed the experiments with support from J.B. I.T. prepared the sample and analysed experimental data with support from J.B. and L.V. A.J.-G. performed the calculations with support from R.F.S., M.I. and O.S. A.J.-G., R.F.S., M.I. and O.S. analysed theory data. R.S. developed the numerical code. F.T. and P.St.J.R. supplied the ARR-PCF. J.B. wrote the manuscript with I.T. and input from all authors.

Corresponding author

Correspondence to Jens Biegert.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature thanks Dong Sun and the other, anonymous, reviewer(s) for their contribution to the peer review of this work. Peer reviewer reports are available.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data figures and tables

Extended Data Fig. 1 Polarization scans for linear, circular and trefoil driving fields.

Harmonic spectra from GaSe are recorded as a function of the crystal rotation angle.

Extended Data Fig. 2 Trefoil selection rules from two-colour mixing of pump photons with opposite spin-angular momentum.

Right, simulated pump spectra for perfect and experimental ellipticity of the pump colours. Maximal suppression of 3 N harmonics is observed for perfectly circular 3.2 µm + 1.6 µm. Imperfect ellipticity leads to a detectable 3 N harmonic signal, meanwhile suppression reduces with harmonic orders approaching the cut-off.

Extended Data Fig. 3 Probe second harmonic signal’s dependency on the pump trefoil rotation, analysed through Fast Fourier Transform.

Clear modulation with 60° periodicity appears in the power spectral density (PSD) during strong field excitation (green) following the six-fold symmetry of the 2H-MoS2 sample.

Extended Data Fig. 4 DFT-calculated bilayer MoS2.

a, Crystal structure. b, First Brillouin zone. c, Band structure obtained by projecting onto the d orbitals of Mo and the p orbitals of S. Red (blue) dispersion curves indicate the ground state fully-filled (empty) valence (conduction) bands.

Supplementary information

Supplementary Information

Supplementary Notes 1–3, Figs 1–6 and References.

Peer Review File

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tyulnev, I., Jiménez-Galán, Á., Poborska, J. et al. Valleytronics in bulk MoS2 with a topologic optical field. Nature 628, 746–751 (2024). https://doi.org/10.1038/s41586-024-07156-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41586-024-07156-y

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing