Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Granzyme serine proteases in inflammation and rheumatic diseases

Abstract

Granzymes (granule-secreted enzymes) are a family of serine proteases that have been viewed as redundant cytotoxic enzymes since their discovery more than 30 years ago. Predominantly produced by cytotoxic lymphocytes and natural killer cells, granzymes are delivered into the cytoplasm of target cells through immunological synapses in cooperation with the pore-forming protein perforin. After internalization, granzymes can initiate cell death through the cleavage of intracellular substrates. However, evidence now also demonstrates the existence of non-cytotoxic, pro-inflammatory, intracellular and extracellular functions that are granzyme specific. Under pathological conditions, granzymes can be produced and secreted extracellularly by immune cells as well as by non-immune cells. Depending on the granzyme, accumulation in the extracellular milieu might contribute to inflammation, tissue injury, impaired wound healing, barrier dysfunction, osteoclastogenesis and/or autoantigen generation.

Key points

  • Granzymes are serine proteases with both cytotoxic and non-cytotoxic functions; phenotypic and mechanistic characterization of granzymes in rheumatic diseases is needed to delineate their specific roles.

  • The five human granzymes have unique substrate specificities and functional roles, as determined by granzyme-specific cleavage preferences, location of accumulation (intracellular or extracellular) and exposure to substrates in tissues.

  • Extracellular granzyme activity can contribute to tissue injury, inflammation, autoimmunity, epithelial and endothelial barrier dysfunction, bullae formation, impaired wound healing, and degenerative or pathological aging.

  • In addition to cytoplasmic proteins involved in apoptosis, granzyme B substrates include extracellular matrix proteins, hemidesmosomal or desmosomal proteins, pro-inflammatory cytokines, cell surface receptors and autoantigens.

  • Granzyme A and granzyme B are elevated in synovial fluid, tissues and plasma of people with rheumatoid arthritis; in an arthritis model, Gzma−/− mice have lower disease severity than that of wild-type mice.

  • CD8+ T cells expressing granzyme B and granzyme K are enriched in the peripheral blood and inflamed tissues of people with rheumatoid arthritis, systemic lupus erythematosus or Sjögren syndrome.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Proposed intracellular and extracellular functions of granzyme A.
Fig. 2: Proposed intracellular and extracellular functions of granzyme B.
Fig. 3: Proposed intracellular and extracellular functions of granzyme K.
Fig. 4: Potential involvement of granzymes in rheumatoid arthritis.

Similar content being viewed by others

References

  1. Joeckel, L. T. & Bird, P. I. Are all granzymes cytotoxic in vivo? Biol. Chem. 395, 181–202 (2014).

    Article  CAS  PubMed  Google Scholar 

  2. Voskoboinik, I., Whisstock, J. C. & Trapani, J. A. Perforin and granzymes: function, dysfunction and human pathology. Nat. Rev. Immunol. 15, 388–400 (2015).

    Article  CAS  PubMed  Google Scholar 

  3. Cullen, S. P., Adrain, C., Lüthi, A. U., Duriez, P. J. & Martin, S. J. Human and murine granzyme B exhibit divergent substrate preferences. J. Cell Biol. 176, 435–444 (2007).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  4. Kaiserman, D. et al. The major human and mouse granzymes are structurally and functionally divergent. J. Cell Biol. 175, 619–630 (2006).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  5. Pardo, J. et al. Granzyme B-induced cell death exerted by ex vivo CTL: discriminating requirements for cell death and some of its signs. Cell Death Differ. 15, 567–579 (2008).

    Article  CAS  PubMed  Google Scholar 

  6. Thomas, D. A., Scorrano, L., Putcha, G. V., Korsmeyer, S. J. & Ley, T. J. Granzyme B can cause mitochondrial depolarization and cell death in the absence of BID, BAX, and BAK. Proc. Natl Acad. Sci. USA 98, 14985–14990 (2001).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  7. Sánchez-Martínez, D. et al. Human NK cells activated by EBV+ lymphoblastoid cells overcome anti-apoptotic mechanisms of drug resistance in haematological cancer cells. Oncoimmunology 4, e991613 (2015).

    Article  PubMed Central  PubMed  Google Scholar 

  8. Plasman, K., Demol, H., Bird, P. I., Gevaert, K. & Van Damme, P. Substrate specificities of the granzyme tryptases A and K. J. Proteome Res. 13, 6067–6077 (2014).

    Article  CAS  PubMed  Google Scholar 

  9. Plasman, K. et al. Conservation of the extended substrate specificity profiles among homologous granzymes across species. Mol. Cell Proteom. 12, 2921–2934 (2013).

    Article  CAS  Google Scholar 

  10. Garzón-Tituaña, M. et al. Granzyme A inhibition reduces inflammation and increases survival during abdominal sepsis. Theranostics 11, 3781–3795 (2021).

    Article  PubMed Central  PubMed  Google Scholar 

  11. Metkar, S. S. et al. Human and mouse granzyme A induce a proinflammatory cytokine response. Immunity 29, 720–733 (2008).

    Article  CAS  PubMed  Google Scholar 

  12. Hagn, M. et al. Human B cells secrete granzyme B when recognizing viral antigens in the context of the acute phase cytokine IL-21. J. Immunol. 183, 1838–1845 (2009).

    Article  CAS  PubMed  Google Scholar 

  13. Hink-Schauer, C., Estébanez-Perpiñá, E., Kurschus, F. C., Bode, W. & Jenne, D. E. Crystal structure of the apoptosis-inducing human granzyme A dimer. Nat. Struct. Biol. 10, 535–540 (2003).

    Article  CAS  PubMed  Google Scholar 

  14. Bell, J. K. et al. The oligomeric structure of human granzyme A is a determinant of its extended substrate specificity. Nat. Struct. Biol. 10, 527–534 (2003).

    Article  CAS  PubMed  Google Scholar 

  15. Lieberman, J. Granzyme A activates another way to die. Immunol. Rev. 235, 93–104 (2010).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  16. Pardo, J. et al. The biology of cytotoxic cell granule exocytosis pathway: granzymes have evolved to induce cell death and inflammation. Microbes Infect. 11, 452–459 (2009).

    Article  CAS  PubMed  Google Scholar 

  17. Beresford, P. J. et al. Granzyme A activates an endoplasmic reticulum-associated caspase-independent nuclease to induce single-stranded DNA nicks. J. Biol. Chem. 276, 43285–43293 (2001).

    Article  CAS  PubMed  Google Scholar 

  18. Zhou, Z. et al. Granzyme A from cytotoxic lymphocytes cleaves GSDMB to trigger pyroptosis in target cells. Science 368, eaaz7548 (2020).

    Article  CAS  PubMed  Google Scholar 

  19. Liu, X., Xia, S., Zhang, Z., Wu, H. & Lieberman, J. Channelling inflammation: gasdermins in physiology and disease. Nat. Rev. Drug Discov. 20, 384–405 (2021).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  20. Isaaz, S., Baetz, K., Olsen, K., Podack, E. & Griffiths, G. M. Serial killing by cytotoxic T lymphocytes: T cell receptor triggers degranulation, re-filling of the lytic granules and secretion of lytic proteins via a non-granule pathway. Eur. J. Immunol. 25, 1071–1079 (1995).

    Article  CAS  PubMed  Google Scholar 

  21. Nakamura, K., Arahata, K., Ishiura, S., Osame, M. & Sugita, H. Degradative activity of granzyme A on skeletal muscle proteins in vitro: a possible molecular mechanism for muscle fiber damage in polymyositis. Neuromuscul. Dis. 3, 303–310 (1993).

    Article  CAS  Google Scholar 

  22. Campbell, R. A. et al. Granzyme A in human platelets regulates the synthesis of proinflammatory cytokines by monocytes in aging. J. Immunol. 200, 295–304 (2018).

    Article  CAS  PubMed  Google Scholar 

  23. Arias, M. A. et al. Elucidating sources and roles of granzymes A and B during bacterial infection and sepsis. Cell Rep. 8, 420–429 (2014).

    Article  CAS  PubMed  Google Scholar 

  24. Santiago, L. et al. Extracellular granzyme A promotes colorectal cancer development by enhancing gut inflammation. Cell Rep. 32, 107847 (2020).

    Article  CAS  PubMed  Google Scholar 

  25. Santiago, L. et al. Granzyme A contributes to inflammatory arthritis in mice through stimulation of osteoclastogenesis. Arthritis Rheumatol. 69, 320–334 (2017).

    Article  CAS  PubMed  Google Scholar 

  26. Masson, D. & Tschopp, J. Inhibition of lymphocyte protease granzyme A by antithrombin III. Mol. Immunol. 25, 1283–1289 (1988).

    Article  CAS  PubMed  Google Scholar 

  27. Simon, M. M., Tran, T., Fruth, U., Gurwitz, D. & Kramer, M. D. Regulation of mouse T cell associated serine proteinase-1 (MTSP-1) by proteinase inhibitors and sulfated polysaccharides. Biol. Chem. Hoppe Seyler 371, 81–87 (1990).

    CAS  PubMed  Google Scholar 

  28. Kaiserman, D. et al. Identification of serpinb6b as a species-specific mouse granzyme A inhibitor suggests functional divergence between human and mouse granzyme A. J. Biol. Chem. 289, 9408–9417 (2014).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  29. Aybay, E. et al. Extended cleavage specificities of human granzymes A and K, two closely related enzymes with conserved but still poorly defined functions in T and NK cell-mediated immunity. Front. Immunol. 14, 1211295 (2023).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  30. Boivin, W. A., Cooper, D. M., Hiebert, P. R. & Granville, D. J. Intracellular versus extracellular granzyme B in immunity and disease: challenging the dogma. Lab. Invest. 89, 1195–1220 (2009).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  31. Thornberry, N. A. et al. A combinatorial approach defines specificities of members of the caspase family and granzyme B: functional relationships established for key mediators of apoptosis. J. Biol. Chem. 272, 17907–17911 (1997).

    Article  CAS  PubMed  Google Scholar 

  32. Zhang, Z. et al. Gasdermin E suppresses tumour growth by activating anti-tumour immunity. Nature 579, 415–420 (2020).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  33. Aubert, A., Lane, M., Jung, K. & Granville, D. J. Granzyme B as a therapeutic target: an update in 2022. Expert Opin. Ther. Targets 26, 979–993 (2022).

    Article  CAS  PubMed  Google Scholar 

  34. Richardson, K. C., Jung, K., Pardo, J., Turner, C. T. & Granville, D. J. Noncytotoxic roles of granzymes in health and disease. Physiology 37, 323–348 (2022).

    Article  CAS  PubMed  Google Scholar 

  35. Prakash, M. D., Bird, C. H. & Bird, P. I. Active and zymogen forms of granzyme B are constitutively released from cytotoxic lymphocytes in the absence of target cell engagement. Immunol. Cell Biol. 87, 249–254 (2009).

    Article  CAS  PubMed  Google Scholar 

  36. Jung, K., Pawluk, M. A., Lane, M., Nabai, L. & Granville, D. J. Granzyme B in epithelial barrier dysfunction and related skin diseases. Am. J. Physiol. Cell Physiol. 323, C170–c189 (2022).

    Article  CAS  PubMed  Google Scholar 

  37. Skjelland, M. et al. Plasma levels of granzyme B are increased in patients with lipid-rich carotid plaques as determined by echogenicity. Atherosclerosis 195, e142–e146 (2007).

    Article  CAS  PubMed  Google Scholar 

  38. Tak, P. P. et al. The levels of soluble granzyme A and B are elevated in plasma and synovial fluid of patients with rheumatoid arthritis (RA). Clin. Exp. Immunol. 116, 366–370 (1999).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  39. Hodge, S., Hodge, G., Nairn, J., Holmes, M. & Reynolds, P. N. Increased airway granzyme B and perforin in current and ex-smoking COPD subjects. COPD 3, 179–187 (2006).

    Article  PubMed  Google Scholar 

  40. Hiroyasu, S. et al. Granzyme B inhibition reduces disease severity in autoimmune blistering diseases. Nat. Commun. 12, 302 (2021).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  41. Malmestrom, C. et al. Relapses in multiple sclerosis are associated with increased CD8+ T-cell mediated cytotoxicity in CSF. J. Neuroimmunol. 196, 159–165 (2008).

    Article  PubMed  Google Scholar 

  42. Turner, C. T. et al. Granzyme B contributes to barrier dysfunction in oxazolone-induced skin inflammation through E-cadherin and FLG cleavage. J. Invest. Dermatol. 141, 36–47 (2021).

    Article  CAS  PubMed  Google Scholar 

  43. Turner, C. T. et al. Granzyme B mediates impaired healing of pressure injuries in aged skin. NPJ Aging Mech. Dis. 7, 6 (2021).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  44. Russo, V. et al. Granzyme B is elevated in autoimmune blistering diseases and cleaves key anchoring proteins of the dermal-epidermal junction. Sci. Rep. 8, 9690 (2018).

    Article  PubMed Central  PubMed  Google Scholar 

  45. Kurschus, F. C. et al. Killing of target cells by redirected granzyme B in the absence of perforin. FEBS Lett. 562, 87–92 (2004).

    Article  CAS  PubMed  Google Scholar 

  46. Tremblay, G. M., Wolbink, A. M., Cormier, Y. & Hack, C. E. Granzyme activity in the inflamed lung is not controlled by endogenous serine proteinase inhibitors. J. Immunol. 165, 3966–3969 (2000).

    Article  CAS  PubMed  Google Scholar 

  47. Buzza, M. S. et al. Extracellular matrix remodeling by human granzyme B via cleavage of vitronectin, fibronectin, and laminin. J. Biol. Chem. 280, 23549–23558 (2005).

    Article  CAS  PubMed  Google Scholar 

  48. Prakash, M. D. et al. Granzyme B promotes cytotoxic lymphocyte transmigration via basement membrane remodeling. Immunity 41, 960–972 (2014).

    Article  CAS  PubMed  Google Scholar 

  49. Chamberlain, C. M. et al. Perforin-independent extracellular granzyme B activity contributes to abdominal aortic aneurysm. Am. J. Pathol. 176, 1038–1049 (2010).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  50. Ang, L. S. et al. Serpina3n attenuates granzyme B-mediated decorin cleavage and rupture in a murine model of aortic aneurysm. Cell Death Dis. 2, e209 (2011).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  51. Hiebert, P. R. et al. Granzyme B contributes to extracellular matrix remodeling and skin aging in apolipoprotein E knockout mice. Exp. Gerontol. 46, 489–499 (2011).

    Article  CAS  PubMed  Google Scholar 

  52. Boivin, W. A. et al. Granzyme B cleaves decorin, biglycan and soluble betaglycan, releasing active transforming growth factor-β1. PLoS One 7, e33163 (2012).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  53. Hendel, A. & Granville, D. J. Granzyme B cleavage of fibronectin disrupts endothelial cell adhesion, migration and capillary tube formation. Matrix Biol. 32, 14–22 (2013).

    Article  CAS  PubMed  Google Scholar 

  54. Hiebert, P. R., Wu, D. & Granville, D. J. Granzyme B degrades extracellular matrix and contributes to delayed wound closure in apolipoprotein E knockout mice. Cell Death Differ. 20, 1404–1414 (2013).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  55. Hendel, A., Hsu, I. & Granville, D. J. Granzyme B releases vascular endothelial growth factor from extracellular matrix and induces vascular permeability. Lab. Invest. 94, 716–725 (2014).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  56. Parkinson, L. G. et al. Granzyme B mediates both direct and indirect cleavage of extracellular matrix in skin after chronic low-dose ultraviolet light irradiation. Aging Cell 14, 67–77 (2015).

    Article  CAS  PubMed  Google Scholar 

  57. Shen, Y. et al. Topical small molecule granzyme B inhibitor improves remodeling in a murine model of impaired burn wound healing. Exp. Mol. Med. 50, 1–11 (2018).

    Article  CAS  PubMed  Google Scholar 

  58. Matsubara, J. A. et al. Retinal distribution and extracellular activity of granzyme B: a serine protease that degrades retinal pigment epithelial tight junctions and extracellular matrix proteins. Front. Immunol. 11, 574 (2020).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  59. Obasanmi, G. et al. Granzyme B contributes to choroidal neovascularization and age-related macular degeneration through proteolysis of thrombospondin-1. Lab. Invest. 103, 100123 (2023).

    Article  PubMed  Google Scholar 

  60. Ronday, H. K. et al. Human granzyme B mediates cartilage proteoglycan degradation and is expressed at the invasive front of the synovium in rheumatoid arthritis. Rheumatology 40, 55–61 (2001).

    Article  CAS  PubMed  Google Scholar 

  61. Froelich, C. J. et al. Human granzyme B degrades aggrecan proteoglycan in matrix synthesized by chondrocytes. J. Immunol. 151, 7161–7171 (1993).

    Article  CAS  PubMed  Google Scholar 

  62. Buzza, M. S. et al. Antihemostatic activity of human granzyme B mediated by cleavage of von Willebrand factor. J. Biol. Chem. 283, 22498–22504 (2008).

    Article  CAS  PubMed  Google Scholar 

  63. Qian, Q. et al. Maternal diesel particle exposure promotes offspring asthma through NK cell-derived granzyme B. J. Clin. Invest. 130, 4133–4151 (2020).

    CAS  PubMed Central  PubMed  Google Scholar 

  64. Loeb, C. R. K., Harris, J. L. & Craik, C. S. Granzyme B proteolyzes receptors important to proliferation and survival, tipping the balance toward apoptosis. J. Biol. Chem. 281, 28326–28335 (2006).

    Article  CAS  PubMed  Google Scholar 

  65. Shen, Y. et al. Granzyme B deficiency protects against angiotensin II-induced cardiac fibrosis. Am. J. Pathol. 186, 87–100 (2016).

    Article  CAS  PubMed  Google Scholar 

  66. Afonina, I. S. et al. Granzyme B-dependent proteolysis acts as a switch to enhance the proinflammatory activity of IL-1α. Mol. Cell 44, 265–278 (2011).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  67. Omoto, Y. et al. Granzyme B is a novel interleukin-18 converting enzyme. J. Dermatol. Sci. 59, 129–135 (2010).

    Article  CAS  PubMed  Google Scholar 

  68. Lim, Y. S. et al. NK cell-derived extracellular granzyme B drives epithelial ulceration during HSV-2 genital infection. Cell Rep. 42, 112410 (2023).

    Article  CAS  PubMed  Google Scholar 

  69. Hu, M. D. et al. γδ intraepithelial lymphocytes facilitate pathological epithelial cell shedding via CD103-mediated granzyme release. Gastroenterology 162, 877–889.e877 (2022).

    Article  CAS  PubMed  Google Scholar 

  70. Casciola-Rosen, L., Andrade, F., Ulanet, D., Wong, W. B. & Rosen, A. Cleavage by granzyme B is strongly predictive of autoantigen status: implications for initiation of autoimmunity. J. Exp. Med. 190, 815–826 (1999).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  71. Darrah, E. & Rosen, A. Granzyme B cleavage of autoantigens in autoimmunity. Cell Death Differ. 17, 624–632 (2010).

    Article  CAS  PubMed  Google Scholar 

  72. Darrah, E. et al. Proteolysis by granzyme B enhances presentation of autoantigenic peptidylarginine deiminase 4 epitopes in rheumatoid arthritis. J. Proteome Res. 16, 355–365 (2017).

    Article  CAS  PubMed  Google Scholar 

  73. Haddad, P. et al. Structure and evolutionary origin of the human granzyme H gene. Int. Immunol. 3, 57–66 (1991).

    Article  CAS  PubMed  Google Scholar 

  74. Wang, L. et al. Structural insights into the substrate specificity of human granzyme H: the functional roles of a novel RKR motif. J. Immunol. 188, 765–773 (2012).

    Article  CAS  PubMed  Google Scholar 

  75. Sedelies, K. A. et al. Discordant regulation of granzyme H and granzyme B expression in human lymphocytes. J. Biol. Chem. 279, 26581–26587 (2004).

    Article  CAS  PubMed  Google Scholar 

  76. Rönnberg, E. et al. Granzyme H is a novel protease expressed by human mast cells. Int. Arch. Allergy Immunol. 165, 68–74 (2014).

    Article  PubMed  Google Scholar 

  77. Waterhouse, N. J. & Trapani, J. A. H is for helper: granzyme H helps granzyme B kill adenovirus-infected cells. Trends Immunol. 28, 373–375 (2007).

    Article  CAS  PubMed  Google Scholar 

  78. Romero, V., Fellows, E., Jenne, D. E. & Andrade, F. Cleavage of La protein by granzyme H induces cytoplasmic translocation and interferes with La-mediated HCV-IRES translational activity. Cell Death Differ. 16, 340–348 (2009).

    Article  CAS  PubMed  Google Scholar 

  79. Yu, D. et al. Natural killer cells disrupt nerve fibers by granzyme H in atheriosclerotic cerebral small vessel disease. J. Gerontol. A Biol. Sci. Med. Sci. 78, 414–423 (2023).

    Article  CAS  PubMed  Google Scholar 

  80. Bovenschen, N. et al. Granzyme K displays highly restricted substrate specificity that only partially overlaps with granzyme A. J. Biol. Chem. 284, 3504–3512 (2009).

    Article  CAS  PubMed  Google Scholar 

  81. Hink-Schauer, C. et al. The 2.2-A crystal structure of human pro-granzyme K reveals a rigid zymogen with unusual features. J. Biol. Chem. 277, 50923–50933 (2002).

    Article  CAS  PubMed  Google Scholar 

  82. Bratke, K., Kuepper, M., Bade, B., Virchow, J. C. Jr & Luttmann, W. Differential expression of human granzymes A, B, and K in natural killer cells and during CD8+ T cell differentiation in peripheral blood. Eur. J. Immunol. 35, 2608–2616 (2005).

    Article  CAS  PubMed  Google Scholar 

  83. Duquette, D. et al. Human granzyme K Is a feature of innate T cells in blood, tissues, and tumors, responding to cytokines rather than TCR stimulation. J. Immunol. 211, 633–647 (2023).

    Article  CAS  PubMed  Google Scholar 

  84. Bade, B. et al. Detection of soluble human granzyme K in vitro and in vivo. Eur. J. Immunol. 35, 2940–2948 (2005).

    Article  CAS  PubMed  Google Scholar 

  85. Rucevic, M. et al. Altered levels and molecular forms of granzyme K in plasma from septic patients. Shock 27, 488–493 (2007).

    Article  CAS  PubMed  Google Scholar 

  86. Li, T., Yang, C., Jing, J., Sun, L. & Yuan, Y. Granzyme K — a novel marker to identify the presence and rupture of abdominal aortic aneurysm. Int. J. Cardiol. 338, 242–247 (2021).

    Article  PubMed  Google Scholar 

  87. Bratke, K. et al. Granzyme K: a novel mediator in acute airway inflammation. Thorax 63, 1006–1011 (2008).

    Article  CAS  PubMed  Google Scholar 

  88. Joeckel, L. T. et al. Mouse granzyme K has pro-inflammatory potential. Cell Death Differ. 18, 1112–1119 (2011).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  89. Turner, C. T. et al. Granzyme K expressed by classically activated macrophages contributes to inflammation and impaired remodeling. J. Invest. Dermatol. 139, 930–939 (2019).

    Article  CAS  PubMed  Google Scholar 

  90. Sharma, M. et al. Extracellular granzyme K mediates endothelial activation through the cleavage of protease-activated receptor-1. FEBS J. 283, 1734–1747 (2016).

    Article  CAS  PubMed  Google Scholar 

  91. Kaiserman, D. et al. Granzyme K initiates IL-6 and IL-8 release from epithelial cells by activating protease-activated receptor 2. PLoS One 17, e0270584 (2022).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  92. Jonsson, A. H. et al. Granzyme K+ CD8 T cells form a core population in inflamed human tissue. Sci. Transl. Med. 14, eabo0686 (2022).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  93. Turner, C. T. et al. Granzyme K contributes to endothelial microvascular damage and leakage during skin inflammation. Br. J. Dermatol. 189, 279–291 (2023).

    Article  PubMed  Google Scholar 

  94. Mogilenko, D. A. et al. Comprehensive profiling of an aging immune system reveals clonal GZMK+ CD8+ T cells as conserved hallmark of inflammaging. Immunity 54, 99–115.e112 (2021).

    Article  CAS  PubMed  Google Scholar 

  95. Verschoor, C. P. et al. NK- and T-cell granzyme B and K expression correlates with age, CMV infection and influenza vaccine-induced antibody titres in older adults. Front. Aging 3, 1098200 (2022).

    Article  PubMed  Google Scholar 

  96. Tyrrell, D. J. et al. Clonally expanded memory CD8+ T cells accumulate in atherosclerotic plaques and are pro-atherogenic in aged mice. Nat. Aging 3, 1576–1590 (2023).

    Article  CAS  PubMed  Google Scholar 

  97. Fernandez, D. M. et al. Single-cell immune landscape of human atherosclerotic plaques. Nat. Med. 25, 1576–1588 (2019).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  98. Cai, Y. et al. Single-cell immune profiling reveals functional diversity of T cells in tuberculous pleural effusion. J. Exp. Med. 219, e20211777 (2022).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  99. Xu, T. et al. Single-cell profiling reveals pathogenic role and differentiation trajectory of granzyme K+CD8+ T cells in primary Sjögren’s syndrome. JCI Insight 8, e167490 (2023).

    Article  PubMed Central  PubMed  Google Scholar 

  100. Arazi, A. et al. The immune cell landscape in kidneys of patients with lupus nephritis. Nat. Immunol. 20, 902–914 (2019).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  101. Dunlap, G. S. et al. Single-cell transcriptomics reveals distinct effector profiles of infiltrating T cells in lupus skin and kidney. JCI Insight 7, e156341 (2022).

    Article  PubMed Central  PubMed  Google Scholar 

  102. de Poot, S. A. H. et al. Human and mouse granzyme M display divergent and species-specific substrate specificities. Biochem. J. 437, 431–442 (2011).

    Article  PubMed  Google Scholar 

  103. Sayers, T. J. et al. The restricted expression of granzyme M in human lymphocytes. J. Immunol. 166, 765–771 (2001).

    Article  CAS  PubMed  Google Scholar 

  104. de Poot, S. A. & Bovenschen, N. Granzyme M: behind enemy lines. Cell Death Differ. 21, 359–368 (2014).

    Article  PubMed Central  PubMed  Google Scholar 

  105. Pao, L. I. et al. Functional analysis of granzyme M and its role in immunity to infection. J. Immunol. 175, 3235–3243 (2005).

    Article  CAS  PubMed  Google Scholar 

  106. Anthony, D. A. et al. A role for granzyme M in TLR4-driven inflammation and endotoxicosis. J. Immunol. 185, 1794–1803 (2010).

    Article  CAS  PubMed  Google Scholar 

  107. Baschuk, N. et al. NK cell intrinsic regulation of MIP-1ɑ by granzyme M. Cell Death Dis. 5, e1115 (2014).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  108. Nordstrom, D. C. et al. Granzyme A-immunoreactive cells in synovial fluid in reactive and rheumatoid arthritis. Clin. Rheumatol. 11, 529–532 (1992).

    Article  CAS  PubMed  Google Scholar 

  109. Smeets, T. J., Dolhain, R. J., Breedveld, F. C. & Tak, P. P. Analysis of the cellular infiltrates and expression of cytokines in synovial tissue from patients with rheumatoid arthritis and reactive arthritis. J. Pathol. 186, 75–81 (1998).

    Article  CAS  PubMed  Google Scholar 

  110. Qiao, J. et al. Elevated serum granzyme B levels are associated with disease activity and joint damage in patients with rheumatoid arthritis. J. Int. Med. Res. 48, 0300060520962954 (2020).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  111. Goldbach-Mansky, R. et al. Raised granzyme B levels are associated with erosions in patients with early rheumatoid factor positive rheumatoid arthritis. Ann. Rheum. Dis. 64, 715–721 (2005).

    Article  CAS  PubMed  Google Scholar 

  112. Knevel, R. et al. A genetic variant in granzyme B is associated with progression of joint destruction in rheumatoid arthritis. Arthritis Rheuma. 65, 582–589 (2013).

    Article  CAS  Google Scholar 

  113. Colombo, E., Scarsi, M., Piantoni, S., Tincani, A. & Airo, P. Serum levels of granzyme B decrease in patients with rheumatoid arthritis responding to abatacept. Clin. Exp. Rheumatol. 34, 37–41 (2016).

    PubMed  Google Scholar 

  114. Zhang, F. et al. Defining inflammatory cell states in rheumatoid arthritis joint synovial tissues by integrating single-cell transcriptomics and mass cytometry. Nat. Immunol. 20, 928–942 (2019).

    Article  PubMed Central  PubMed  Google Scholar 

  115. Moon, J.-S. et al. Cytotoxic CD8+ T cells target citrullinated antigens in rheumatoid arthritis. Nat. Commun. 14, 319 (2023).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  116. Tak, P. P. et al. Granzyme-positive cytotoxic cells are specifically increased in early rheumatoid synovial tissue. Arthritis Rheum. 37, 1735–1743 (1994).

    Article  CAS  PubMed  Google Scholar 

  117. Kim, W. J., Kim, H., Suk, K. & Lee, W. H. Macrophages express granzyme B in the lesion areas of atherosclerosis and rheumatoid arthritis. Immunol. Lett. 111, 57–65 (2007).

    Article  CAS  PubMed  Google Scholar 

  118. Xu, L. et al. Impairment of granzyme B-producing regulatory B cells correlates with exacerbated rheumatoid arthritis. Front. Immunol. 8, 768 (2017).

    Article  PubMed Central  PubMed  Google Scholar 

  119. Cui, D. et al. Changes in regulatory B cells and their relationship with rheumatoid arthritis disease activity. Clin. Exp. Med. 15, 285–292 (2015).

    Article  CAS  PubMed  Google Scholar 

  120. Kageyama, Y., Kobayashi, H., Kato, N. & Shimazu, M. Etanercept reduces the serum levels of macrophage chemotactic protein-1 in patients with rheumatoid arthritis. Mod. Rheumatol. 19, 372–378 (2009).

    Article  CAS  PubMed  Google Scholar 

  121. Horiuchi, K., Saito, S., Sasaki, R., Tomatsu, T. & Toyama, Y. Expression of granzyme B in human articular chondrocytes. J. Rheumatol. 30, 1799–1810 (2003).

    CAS  PubMed  Google Scholar 

  122. Darrah, E. et al. Erosive rheumatoid arthritis is associated with antibodies that activate PAD4 by increasing calcium sensitivity. Sci. Transl. Med. 5, 186ra165 (2013).

    Article  Google Scholar 

  123. Halvorsen, E. H. et al. Serum IgG antibodies to peptidylarginine deiminase 4 in rheumatoid arthritis and associations with disease severity. Ann. Rheum. Dis. 67, 414–417 (2008).

    Article  CAS  PubMed  Google Scholar 

  124. Kinloch, A. et al. Synovial fluid is a site of citrullination of autoantigens in inflammatory arthritis. Arthritis Rheum. 58, 2287–2295 (2008).

    Article  CAS  PubMed  Google Scholar 

  125. Luo, Y. et al. The minor collagens in articular cartilage. Protein Cell 8, 560–572 (2017).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  126. Weng, S. S. H. et al. Sensitive determination of proteolytic proteoforms in limited microscale proteome samples. Mol. Cell Proteom. 18, 2335–2347 (2019).

    Article  CAS  Google Scholar 

  127. Zhou, J., Tang, X., Ding, Y., An, Y. & Zhao, X. Natural killer cell activity and frequency of killer cell immunoglobulin-like receptors in children with different forms of juvenile idiopathic arthritis. Pediatr. Allergy Immunol. 24, 691–696 (2013).

    Article  PubMed  Google Scholar 

  128. Wang, M. et al. Single-cell analysis in blood reveals distinct immune cell profiles in gouty arthritis. J. Immunol. 210, 745–752 (2023).

    Article  CAS  PubMed  Google Scholar 

  129. Canete, J. D. et al. Distinct synovial immunopathology in Behcet disease and psoriatic arthritis. Arthritis Res. Ther. 11, R17 (2009).

    Article  PubMed Central  PubMed  Google Scholar 

  130. Shan, L. et al. Increased intra-articular granzyme M may trigger local IFN-λ1/IL-29 response in rheumatoid arthritis. Clin. Exp. Rheumatol. 38, 220–226 (2020).

    Article  PubMed  Google Scholar 

  131. McLoughlin, R. M. et al. IL-6 trans-signaling via STAT3 directs T cell infiltration in acute inflammation. Proc. Natl Acad. Sci. USA 102, 9589–9594 (2005).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  132. Young, L. H. et al. Expression of cytolytic mediators by synovial fluid lymphocytes in rheumatoid arthritis. Am. J. Pathol. 140, 1261–1268 (1992).

    CAS  PubMed Central  PubMed  Google Scholar 

  133. Kummer, J. A. et al. Expression of granzymes A and B in synovial tissue from patients with rheumatoid arthritis and osteoarthritis. Clin. Immunol. Immunopathol. 73, 88–95 (1994).

    Article  CAS  PubMed  Google Scholar 

  134. Nanki, T. et al. Migration of CX3CR1-positive T cells producing type 1 cytokines and cytotoxic molecules into the synovium of patients with rheumatoid arthritis. Arthritis Rheum. 46, 2878–2883 (2002).

    Article  CAS  PubMed  Google Scholar 

  135. Jaime, P. et al CD56+/CD16 natural killer cells expressing the inflammatory protease granzyme A are enriched in synovial fluid from patients with osteoarthritis. Osteoarthritis Cartilage 25, 1708–1718 (2017).

    Article  CAS  PubMed  Google Scholar 

  136. Wilson, J. A. et al. RNA-Seq analysis of chikungunya virus infection and identification of granzyme A as a major promoter of arthritic inflammation. PLoS Pathog. 13, e1006155 (2017).

    Article  PubMed Central  PubMed  Google Scholar 

  137. Jia, T. et al. CRISPR/Cas13d targeting GZMA in PARs pathway regulates the function of osteoclasts in chronic apical periodontitis. Cell Mol. Biol. Lett. 28, 70 (2023).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  138. Simon, M. M., Kramer, M. D., Prester, M. & Gay, S. Mouse T-cell associated serine proteinase 1 degrades collagen type IV: a structural basis for the migration of lymphocytes through vascular basement membranes. Immunology 73, 117–119 (1991).

    CAS  PubMed Central  PubMed  Google Scholar 

  139. Simon, M. M., Prester, M., Nerz, G., Kramer, M. D. & Fruth, U. Release of biologically active fragments from human plasma-fibronectin by murine T cell-specific proteinase 1 (TSP-1). Biol. Chem. Hoppe Seyler 369, 107–112 (1988).

    CAS  PubMed  Google Scholar 

  140. Crow, M. K. Pathogenesis of systemic lupus erythematosus: risks, mechanisms and therapeutic targets. Ann. Rheum. Dis. 82, 999–1014 (2023).

    Article  CAS  PubMed  Google Scholar 

  141. Shah, D., Kiran, R., Wanchu, A. & Bhatnagar, A. Soluble granzyme B and cytotoxic T lymphocyte activity in the pathogenesis of systemic lupus erythematosus. Cell Immunol. 269, 16–21 (2011).

    Article  CAS  PubMed  Google Scholar 

  142. Kok, H. M. et al. Systemic and local granzyme B levels are associated with disease activity, kidney damage and interferon signature in systemic lupus erythematosus. Rheumatology 56, 2129–2134 (2017).

    Article  CAS  PubMed  Google Scholar 

  143. Chen, L. et al. IKZF1 polymorphisms are associated with susceptibility, cytokine levels, and clinical features in systemic lupus erythematosus. Medicine 99, e22607 (2020).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  144. Daca, A. et al. Two systemic lupus erythematosus (SLE) global disease activity indexes — the SLE disease activity index and the systemic lupus activity measure —demonstrate different correlations with activation of peripheral blood CD4+ T cells. Hum. Immunol. 72, 1160–1167 (2011).

    Article  CAS  PubMed  Google Scholar 

  145. Blanco, P. et al. Increase in activated CD8+ T lymphocytes expressing perforin and granzyme B correlates with disease activity in patients with systemic lupus erythematosus. Arthritis Rheum. 52, 201–211 (2005).

    Article  CAS  PubMed  Google Scholar 

  146. Patel, J. et al. Multidimensional immune profiling of cutaneous lupus erythematosus in vivo stratified by patient response to antimalarials. Arthritis Rheumatol. 74, 1687–1698 (2022).

    Article  CAS  PubMed  Google Scholar 

  147. Abdou, A. G., Shoeib, M., Bakry, O. A. & El-Bality, H. Immunohistochemical expression of granzyme B and perforin in discoid lupus erythematosus. Ultrastruct. Pathol. 37, 408–416 (2013).

    Article  PubMed  Google Scholar 

  148. Fogagnolo, L. et al. Cytotoxic granules in distinct subsets of cutaneous lupus erythematosus. Clin. Exp. Dermatol. 39, 835–839 (2014).

    Article  CAS  PubMed  Google Scholar 

  149. Wenzel, J. et al. CXCR3-mediated recruitment of cytotoxic lymphocytes in lupus erythematosus profundus. J. Am. Acad. Dermatol. 56, 648–650 (2007).

    Article  PubMed  Google Scholar 

  150. Wenzel, J. et al. Scarring skin lesions of discoid lupus erythematosus are characterized by high numbers of skin-homing cytotoxic lymphocytes associated with strong expression of the type I interferon-induced protein MxA. Br. J. Dermatol. 153, 1011–1015 (2005).

    Article  CAS  PubMed  Google Scholar 

  151. Grassi, M., Capello, F., Bertolino, L., Seia, Z. & Pippione, M. Identification of granzyme B-expressing CD-8-positive T cells in lymphocytic inflammatory infiltrate in cutaneous lupus erythematosus and in dermatomyositis. Clin. Exp. Dermatol. 34, 910–914 (2009).

    Article  CAS  PubMed  Google Scholar 

  152. Lovato, B. H. et al. IL-1β and IL-17 in cutaneous lupus erythematous skin biopsies: could immunohistochemicals indicate a tendency towards systemic involvement? Bras. Dermatol. 99, 66–71 (2023).

    Article  Google Scholar 

  153. Zhou, M. et al. JAK/STAT signaling controls the fate of CD8+CD103+ tissue-resident memory T cell in lupus nephritis. J. Autoimmun. 109, 102424 (2020).

    Article  CAS  PubMed  Google Scholar 

  154. Litvinova, E. et al. MAIT cells altered phenotype and cytotoxicity in lupus patients are linked to renal disease severity and outcome. Front. Immunol. 14, 1205405 (2023).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  155. Murayama, G. et al. A critical role for mucosal-associated invariant T cells as regulators and therapeutic targets in systemic lupus erythematosus. Front. Immunol. 10, 2681 (2019).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  156. Perez, R. K. et al. Single-cell RNA-seq reveals cell type-specific molecular and genetic associations to lupus. Science 376, eabf1970 (2022).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  157. Hernandez-Pigeon, H. et al. UVA induces granzyme B in human keratinocytes through MIF: implication in extracellular matrix remodeling. J. Biol. Chem. 282, 8157–8164 (2007).

    Article  CAS  PubMed  Google Scholar 

  158. van Leeuwen, E. M. et al. Emergence of a CD4+CD28 granzyme B+, cytomegalovirus-specific T cell subset after recovery of primary cytomegalovirus infection. J. Immunol. 173, 1834–1841 (2004).

    Article  PubMed  Google Scholar 

  159. Aguilera, J. et al. Granzymes, IL-16, and poly(ADP-ribose) polymerase 1 increase during wildfire smoke exposure. J. Allergy Clin. Immunol. Glob. 2, 100093 (2023).

    Article  PubMed Central  PubMed  Google Scholar 

  160. Tsokos, G. C., Lo, M. S., Costa Reis, P. & Sullivan, K. E. New insights into the immunopathogenesis of systemic lupus erythematosus. Nat. Rev. Rheumatol. 12, 716–730 (2016).

    Article  CAS  PubMed  Google Scholar 

  161. Lu, C. et al. Type I interferon suppresses tumor growth through activating the STAT3-granzyme B pathway in tumor-infiltrating cytotoxic T lymphocytes. J. Immunother. Cancer 7, 157 (2019).

    Article  PubMed Central  PubMed  Google Scholar 

  162. Newby, B. N. et al. Type 1 interferons potentiate human CD8+ T-cell cytotoxicity through a STAT4- and granzyme B-dependent pathway. Diabetes 66, 3061–3071 (2017).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  163. Turner, C. T., Lim, D. & Granville, D. J. Granzyme B in skin inflammation and disease. Matrix Biol. 75–76, 126–140 (2019).

    Article  PubMed  Google Scholar 

  164. Graham, K. L. et al. Granzyme B is dispensable for immunologic tolerance to self in a murine model of systemic lupus erythematosus. Arthritis Rheum. 52, 1684–1693 (2005).

    Article  CAS  PubMed  Google Scholar 

  165. Rabani, M. et al. IL-21 dependent granzyme B production of B-cells is decreased in patients with lupus nephritis. Clin. Immunol. 188, 45–51 (2018).

    Article  CAS  PubMed  Google Scholar 

  166. Bai, M. et al. Impaired granzyme B-producing regulatory B cells in systemic lupus erythematosus. Mol. Immunol. 140, 217–224 (2021).

    Article  CAS  PubMed  Google Scholar 

  167. Brito-Zeron, P. et al. Sjögren syndrome. Nat. Rev. Dis. Prim. 2, 16047 (2016).

    Article  PubMed  Google Scholar 

  168. Kaneko, N. et al. Cytotoxic CD8+ T cells may be drivers of tissue destruction in Sjögren’s syndrome. Sci. Rep. 12, 15427 (2022).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  169. Akiyama, M., Yoshimoto, K. & Kaneko, Y. Significant association of CX3CR1+CD8 T cells with aging and distinct clinical features in Sjögren’s syndrome and IgG4-related disease. Clin. Exp. Rheumatol. 41, 2409–2417 (2023).

    PubMed  Google Scholar 

  170. Tasaki, S. et al. Multiomic disease signatures converge to cytotoxic CD8 T cells in primary Sjögren’s syndrome. Ann. Rheum. Dis. 76, 1458–1466 (2017).

    Article  CAS  PubMed  Google Scholar 

  171. Wang, Q. et al. Correlation of peripheral CD4+GranzB+CTLs with disease severity in patients with primary Sjögren’s syndrome. Arthritis Res. Ther. 23, 257 (2021).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  172. Huang, M. et al. Detection of apoptosis-specific autoantibodies directed against granzyme B-induced cleavage fragments of the SS-B (La) autoantigen in sera from patients with primary Sjögren’s syndrome. Clin. Exp. Immunol. 142, 148–154 (2005).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  173. Pope, J. E. et al. State-of-the-art evidence in the treatment of systemic sclerosis. Nat. Rev. Rheumatol. 19, 212–226 (2023).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  174. Fuschiotti, P., Medsger, T. A. Jr & Morel, P. A. Effector CD8+ T cells in systemic sclerosis patients produce abnormally high levels of interleukin-13 associated with increased skin fibrosis. Arthritis Rheum. 60, 1119–1128 (2009).

    Article  CAS  PubMed  Google Scholar 

  175. Ayano, M. et al. Increased CD226 expression on CD8+ T cells is associated with upregulated cytokine production and endothelial cell injury in patients with systemic sclerosis. J. Immunol. 195, 892–900 (2015).

    Article  CAS  PubMed  Google Scholar 

  176. Padilla, C. M. et al. Increased CD8+ tissue resident memory T cells, regulatory T cells, and activated natural killer cells in systemic sclerosis lungs. Rheumatology 63, 837–845 (2023).

    Article  Google Scholar 

  177. Maehara, T. et al. Cytotoxic CD4+ T lymphocytes may induce endothelial cell apoptosis in systemic sclerosis. J. Clin. Invest. 130, 2451–2464 (2020).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  178. Gumkowska-Sroka, O. et al. Cytometric characterization of main immunocompetent cells in patients with systemic sclerosis: relationship with disease activity and type of immunosuppressive treatment. J. Clin. Med. 8, 625 (2019).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  179. Horikawa, M. et al. Abnormal natural killer cell function in systemic sclerosis: altered cytokine production and defective killing activity. J. Invest. Dermatol. 125, 731–737 (2005).

    Article  CAS  PubMed  Google Scholar 

  180. Henriques, A. et al. Subset-specific alterations in frequencies and functional signatures of γδ T cells in systemic sclerosis patients. Inflamm. Res. 65, 985–994 (2016).

    Article  CAS  PubMed  Google Scholar 

  181. Kahaleh, M. B., Fan, P. S. & Otsuka, T. γδ Receptor bearing T cells in scleroderma: enhanced interaction with vascular endothelial cells in vitro. Clin. Immunol. 91, 188–195 (1999).

    Article  CAS  PubMed  Google Scholar 

  182. Schachna, L. et al. Recognition of granzyme B-generated autoantigen fragments in scleroderma patients with ischemic digital loss. Arthritis Rheum. 46, 1873–1884 (2002).

    Article  CAS  PubMed  Google Scholar 

  183. Ulanet, D. B., Flavahan, N. A., Casciola-Rosen, L. & Rosen, A. Selective cleavage of nucleolar autoantigen B23 by granzyme B in differentiated vascular smooth muscle cells: insights into the association of specific autoantibodies with distinct disease phenotypes. Arthritis Rheum. 50, 233–241 (2004).

    Article  CAS  PubMed  Google Scholar 

  184. Overall, C. M. & Dean, R. A. Degradomics: systems biology of the protease web. Pleiotropic roles of MMPs in cancer. Cancer Metastasis Rev. 25, 69–75 (2006).

    Article  PubMed  Google Scholar 

  185. Sipione, S. et al. Identification of a novel human granzyme B inhibitor secreted by cultured Sertoli cells. J. Immunol. 177, 5051–5058 (2006).

    Article  CAS  PubMed  Google Scholar 

  186. Horvath, A. J. et al. The murine orthologue of human antichymotrypsin: a structural paradigm for clade A3 serpins. J. Biol. Chem. 280, 43168–43178 (2005).

    Article  CAS  PubMed  Google Scholar 

  187. Hsu, I. et al. Serpina3n accelerates tissue repair in a diabetic mouse model of delayed wound healing. Cell Death Dis. 5, e1458 (2014).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  188. Li, F. et al. Neuronal serpina3n is an endogenous protector against blood brain barrier damage following cerebral ischemic stroke. J. Cereb. Blood Flow. Metab. 43, 241–257 (2023).

    Article  CAS  PubMed  Google Scholar 

  189. Haile, Y. et al. Granzyme B-inhibitor serpina3n induces neuroprotection in vitro and in vivo. J. Neuroinflammation 12, 157 (2015).

    Article  PubMed Central  PubMed  Google Scholar 

  190. Saito, A. et al. Blockade of granzyme B remarkably improves mucocutaneous diseases with keratinocyte death in interface dermatitis. J. Invest. Dermatol. 138, 2079–2083 (2018).

    Article  CAS  PubMed  Google Scholar 

  191. Raveney, B. J. E. et al. Eomesodermin-expressing T-helper cells are essential for chronic neuroinflammation. Nat. Commun. 6, 8437 (2015).

    Article  CAS  PubMed  Google Scholar 

  192. Uranga-Murillo, I. et al. Biological relevance of granzymes A and K during E. coli sepsis. Theranostics 11, 9873–9883 (2021).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  193. Sas, G., Pepper, D. S. & Cash, J. D. Investigations on antithrombin III in normal plasma and serum. Br. J. Haematol. 30, 265–272 (1975).

    Article  CAS  PubMed  Google Scholar 

  194. Willoughby, C. A. et al. Discovery of potent, selective human granzyme B inhibitors that inhibit CTL mediated apoptosis. Bioorg. Med. Chem. Lett. 12, 2197–2200 (2002).

    Article  CAS  PubMed  Google Scholar 

  195. Dufour, A. & Overall, C. M. Missing the target: matrix metalloproteinase antitargets in inflammation and cancer. Trends Pharmacol. Sci. 34, 233–242 (2013).

    Article  CAS  PubMed  Google Scholar 

  196. Ebnet, K. et al. Granzyme A-deficient mice retain potent cell-mediated cytotoxicity. EMBO J. 14, 4230–4239 (1995).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  197. Heusel, J. W., Wesselschmidt, R. L., Shresta, S., Russell, J. H. & Ley, T. J. Cytotoxic lymphocytes require granzyme B for the rapid induction of DNA fragmentation and apoptosis in allogeneic target cells. Cell 76, 977–987 (1994).

    Article  CAS  PubMed  Google Scholar 

  198. Joeckel, L. T., Allison, C. C., Pellegrini, M., Bird, C. H. & Bird, P. I. Granzyme K-deficient mice show no evidence of impaired antiviral immunity. Immunol. Cell Biol. 95, 676–683 (2017).

    Article  CAS  PubMed  Google Scholar 

  199. Saito, S., Murakoshi, K., Kotake, S., Kamatani, N. & Tomatsu, T. Granzyme B induces apoptosis of chondrocytes with natural killer cell-like cytotoxicity in rheumatoid arthritis. J. Rheumatol. 35, 1932–1943 (2008).

    CAS  PubMed  Google Scholar 

  200. Zhang, D., Beresford, P. J., Greenberg, A. H. & Lieberman, J. Granzymes A and B directly cleave lamins and disrupt the nuclear lamina during granule-mediated cytolysis. Proc. Natl Acad. Sci. USA 98, 5746–5751 (2001).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgements

D.J.G. is funded by grants-in-aid from the Canadian Institutes for Health Research (CIHR). A.A. is the recipient of the Arthritis Society Canada Training Postdoctoral Fellowship. J.P. is funded by CIBER (Centro de Investigación Biomédica en Red; CB21/13/00087), Instituto de Salud Carlos III, FEDER (Fondo Europeo de Desarrollo Regional), Gobierno de Aragón (Group B29_23R, and LMP139_21), Grant PID2020-113963RBI00 by MCIN/AEI/10.13039/501100011033, ASPANOA, and Carrera de la Mujer de Monzón.

Author information

Authors and Affiliations

Authors

Contributions

The authors contributed equally to all aspects of the article.

Corresponding author

Correspondence to David J. Granville.

Ethics declarations

Competing interests

D.J.G. is a co-founder and chief scientific officer of viDA Therapeutics, which owns patents for and is developing inhibitors targeting granzymes as therapeutics. The remaining authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Rheumatology thanks Niels Bovenschen and the other, anonymous, reviewers for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aubert, A., Jung, K., Hiroyasu, S. et al. Granzyme serine proteases in inflammation and rheumatic diseases. Nat Rev Rheumatol (2024). https://doi.org/10.1038/s41584-024-01109-5

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41584-024-01109-5

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing