Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

The gut microbiome in systemic lupus erythematosus: lessons from rheumatic fever

Abstract

For more than a century, certain bacterial infections that can breach the skin and mucosal barriers have been implicated as common triggers of autoimmune syndromes, especially post-infection autoimmune diseases that include rheumatic fever and post-streptococcal glomerulonephritis. However, only in the past few years has the importance of imbalances within our own commensal microbiota communities, and within the gut, in the absence of infection, in promoting autoimmune pathogenesis become fully appreciated. A diversity of species and mechanisms have been implicated, including disruption of the gut barrier. Emerging data suggest that expansions (or blooms) of pathobiont species are involved in autoimmune pathogenesis and stimulate clonal expansion of T cells and B cells that recognize microbial antigens. This Review discusses the relationship between the gut microbiome and the immune system, and the potential consequence of disrupting the community balance in terms of autoimmune development, focusing on systemic lupus erythematosus. Notably, inter-relationships between expansions of certain members within gut microbiota communities and concurrent autoimmune responses bear features reminiscent of classical post-infection autoimmune disease. From such insights, new therapeutic opportunities are being considered to restore the balance within microbiota communities or re-establishing the gut-barrier integrity to reinforce immune homeostasis in the host.

Key points

  • Systemic lupus erythematosus (SLE) development involves many genetic and environmental factors, and emerging data implicate various gut pathobionts as inciting and exacerbating factors.

  • Emerging data highlight parallels between autoimmune diseases such as SLE and post-streptococcal illnesses including rheumatic fever.

  • Increased permeability of the gut barrier allows microbes and microbial metabolites to interact with host immune cells, subsequently driving pathological progression.

  • Additional longitudinal studies will facilitate more in-depth elucidation of the inter-relationships between SLE and gut dysbiosis in individual patients.

  • The impact of dietary factors, antibiotics and other exposures on microbial resilience and dysbiosis, and subsequent development or flares of autoimmune disease, are also important topics for future research.

  • Modulating the gut microbiome of patients with SLE holds promise as a therapeutic intervention that could provide a more targeted and effective approach to treating the disease than broad immunosuppression.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Potential role of pathobionts and intestinal barrier dysfunction in systemic lupus erythematosus.
Fig. 2: Representation of Ruminococcus gnavus strain-specific glycans.
Fig. 3: Postulated steps in systemic lupus erythematosus aetiopathogenesis and gut microbiota involvement.

Similar content being viewed by others

References

  1. Barber, M. R. W. et al. Global epidemiology of systemic lupus erythematosus. Nat. Rev. Rheumatol. 17, 515–532 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  2. Dinse, G. E. et al. Increasing prevalence of antinuclear antibodies in the United States. Arthritis Rheumatol. 72, 1026–1035 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Aringer, M. et al. 2019 European League Against Rheumatism/American College of Rheumatology classification criteria for systemic lupus erythematosus. Arthritis Rheumatol. 71, 1400–1412 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  4. Wallace, D. & Hahn, B. H. Dubois’ lupus erythematosus and related syndromes e-book: expert consult-online. (Elsevier Health Sciences, 2012).

  5. Miyauchi, E., Shimokawa, C., Steimle, A., Desai, M. S. & Ohno, H. The impact of the gut microbiome on extra-intestinal autoimmune diseases. Nat. Rev. Immunol. 23, 9–23 (2023).

    Article  CAS  PubMed  Google Scholar 

  6. Anders, H.-J. et al. Lupus nephritis. Nat. Rev. Dis. Prim. 6, 7 (2020).

    Article  PubMed  Google Scholar 

  7. Reichlin, M., Harley, J. B. & Lockshin, M. D. Serologic studies of monozygotic twins with systemic lupus erythematosus. Arthritis Rheum. 35, 457–464 (1992).

    Article  CAS  PubMed  Google Scholar 

  8. Kuo, C. F. et al. Familial aggregation of systemic lupus erythematosus and coaggregation of autoimmune diseases in affected families. JAMA Intern. Med. 175, 1518–1526 (2015).

    Article  PubMed  Google Scholar 

  9. Ulff-Moller, C. J., Svendsen, A. J., Viemose, L. N. & Jacobsen, S. Concordance of autoimmune disease in a nationwide Danish systemic lupus erythematosus twin cohort. Semin. Arthritis Rheum. 47, 538–544 (2018).

    Article  PubMed  Google Scholar 

  10. Chen, L. et al. Genome-wide assessment of genetic risk for systemic lupus erythematosus and disease severity. Hum. Mol. Genet. 29, 1745–1756 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Langefeld, C. D. et al. Transancestral mapping and genetic load in systemic lupus erythematosus. Nat. Commun. 8, 16021 (2017).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  12. Demkova, K., Morris, D. L. & Vyse, T. J. Genetics of SLE: does this explain susceptibility and severity across racial groups? Rheumatology 62, i15–i21 (2023).

    Article  PubMed  Google Scholar 

  13. Parks, C. G., de Souza Espindola Santos, A., Barbhaiya, M. & Costenbader, K. H. Understanding the role of environmental factors in the development of systemic lupus erythematosus. Best. Pract. Res. Clin. Rheumatol. 31, 306–320 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  14. Azzouz, D. et al. Longitudinal gut microbiome analyses and blooms of pathogenic strains during lupus disease flares. Ann. Rheum. Dis. 82, 1315–1327 (2023).

    Article  CAS  PubMed  Google Scholar 

  15. Dogra, S. K., Doré, J. & Damak, S. Gut microbiota resilience: definition, link to health and strategies for intervention. Front. Microbiol. 11, 572921 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  16. Cunningham MW. in: Ferretti JJ, Stevens DL, Fischetti VA, (eds.) Streptococcus Pyogenes: Basic Biology to Clinical Manifestations. (University of Oklahoma Health Sciences Center, 2016)

  17. Muhamed, B., Parks, T. & Sliwa, K. Genetics of rheumatic fever and rheumatic heart disease’. Nat. Rev. Cardiol. 17, 145–154 (2019).

    Article  PubMed  Google Scholar 

  18. Karthikeyan, G. & Guilherme, L. Acute rheumatic fever. Lancet 392, 161–174 (2018).

    Article  PubMed  Google Scholar 

  19. Gewitz, M. H. et al. Revision of the Jones Criteria for the diagnosis of acute rheumatic fever in the era of Doppler echocardiography: a scientific statement from the American Heart Association. Circulation 131, 1806–1818 (2015).

    Article  PubMed  Google Scholar 

  20. Wells, W. C. Observations on the dropsy which succeeds scarlet fever. Trans. Soc. Imp. Med. Chir. Knowl. 3, 167–186 (1812).

    Google Scholar 

  21. Rodriguez-Iturbe, B. Autoimmunity in acute poststreptococcal GN: a neglected aspect of the disease. J. Am. Soc. Nephrol. 32, 534–542 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Cunningham, M. W. Molecular mimicry, autoimmunity, and infection: the cross-reactive antigens of group A streptococci and their sequelae. Microbiol. Spectr. 7, 7.4. 20 (2019).

    Article  Google Scholar 

  23. Breed, E. R. & Binstadt, B. A. Autoimmune valvular carditis. Curr. Allergy Asthma Rep. 15, 491 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  24. Teixeira, A. L., Vasconcelos, L. P., Nunes, M. & Singer, H. Sydenham’s chorea: from pathophysiology to therapeutics. Expert. Rev. Neurother. 21, 913–922 (2021).

    Article  CAS  PubMed  Google Scholar 

  25. Hanly, J. G., Kozora, E., Beyea, S. D. & Birnbaum, J. Review: nervous system disease in systemic lupus erythematosus: current status and future directions. Arthritis Rheumatol. 71, 33–42 (2019).

    Article  PubMed  Google Scholar 

  26. Psychos, D. N., Voulgari, P. V., Skopouli, F. N., Drosos, A. A. & Moutsopoulos, H. M. Erythema nodosum: the underlying conditions. Clin. Rheumatol. 19, 212–216 (2000).

    Article  CAS  PubMed  Google Scholar 

  27. Stull, C., Sprow, G. & Werth, V. P. Cutaneous involvement in systemic lupus erythematosus: a review for the rheumatologist. J. Rheumatol. 50, 27–35 (2023).

    Article  CAS  PubMed  Google Scholar 

  28. Gibofsky, A. & Zabriskie, J. B. Rheumatic fever and poststreptococcal reactive arthritis. Curr. Opin. Rheumatol. 7, 299–305 (1995).

    Article  CAS  PubMed  Google Scholar 

  29. Ceccarelli, F. et al. Joint involvement in systemic lupus erythematosus: from pathogenesis to clinical assessment. Semin. Arthritis Rheum. 47, 53–64 (2017).

    Article  CAS  PubMed  Google Scholar 

  30. Benedek, T. G. Subcutaneous nodules and the differentiation of rheumatoid arthritis from rheumatic fever. Semin. Arthritis Rheum. 13, 305–321 (1984).

    Article  CAS  PubMed  Google Scholar 

  31. Hahn, B. H., Yardley, J. H. & Stevens, M. B. “Rheumatoid” nodules in systemic lupus erythematosus. Ann. Intern. Med. 72, 49–58 (1970).

    Article  CAS  PubMed  Google Scholar 

  32. Yoshinoya, S. & Pope, R. M. Detection of immune complexes in acute rheumatic fever and their relationship to HLA-B5. J. Clin. Invest. 65, 136–145 (1980).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Kavai, M. & Szegedi, G. Immune complex clearance by monocytes and macrophages in systemic lupus erythematosus. Autoimmun. Rev. 6, 497–502 (2007).

    Article  CAS  PubMed  Google Scholar 

  34. Malik, A., Brudvig, J. M., Gadsden, B. J., Ethridge, A. D. & Mansfield, L. S. Campylobacter jejuni induces autoimmune peripheral neuropathy via Sialoadhesin and Interleukin-4 axes. Gut microbes 14, 2064706 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  35. D’Elios, M. M., Appelmelk, B. J., Amedei, A., Bergman, M. P. & Del Prete, G. Gastric autoimmunity: the role of Helicobacter pylori and molecular mimicry. Trends Mol. Med. 10, 316–323 (2004).

    Article  PubMed  Google Scholar 

  36. Jarrot, P.-A. & Kaplanski, G. Pathogenesis of ANCA-associated vasculitis: an update. Autoimmun. Rev. 15, 704–713 (2016).

    Article  CAS  PubMed  Google Scholar 

  37. Pereira, M. S. & Kriegel, M. A. Evolving concepts of host–pathobiont interactions in autoimmunity. Curr. Opin. Immunol. 80, 102265 (2023).

    Article  CAS  PubMed  Google Scholar 

  38. Ruff, W. E., Greiling, T. M. & Kriegel, M. A. Host–microbiota interactions in immune-mediated diseases. Nat. Rev. Microbiol. 18, 521–538 (2020).

    Article  CAS  PubMed  Google Scholar 

  39. Wesemann, D. R. et al. Microbial colonization influences early B-lineage development in the gut lamina propria. Nature 501, 112–115 (2013).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  40. Levy, M., Kolodziejczyk, A. A., Thaiss, C. A. & Elinav, E. Dysbiosis and the immune system. Nat. Rev. Immunol. 17, 219–232 (2017).

    Article  CAS  PubMed  Google Scholar 

  41. Zheng, D., Liwinski, T. & Elinav, E. Interaction between microbiota and immunity in health and disease. Cell Res. 30, 492–506 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  42. Gillbert, J. A. et al. Current understanding of the human microbiome. Nat. Med. 24, 392–400 (2018).

    Article  Google Scholar 

  43. Atarashi, K. et al. Induction of colonic regulatory T cells by indigenous Clostridium species. Science 331, 337–341 (2011).

    Article  ADS  CAS  PubMed  Google Scholar 

  44. Geuking, M. B. et al. Intestinal bacterial colonization induces mutualistic regulatory T cell responses. Immunity 34, 794–806 (2011).

    Article  CAS  PubMed  Google Scholar 

  45. Ohno, H. The impact of metabolites derived from the gut microbiota on immune regulation and diseases. Int. Immunol. 32, 629–636 (2020).

    Article  CAS  PubMed  Google Scholar 

  46. Arpaia, N. et al. Metabolites produced by commensal bacteria promote peripheral regulatory T-cell generation. Nature 504, 451–455 (2013).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  47. Furusawa, Y., Obata, Y. & Hase, K. Commensal microbiota regulates T cell fate decision in the gut. Semin. Immunopathol. 37, 17–25 (2015).

    Article  PubMed  Google Scholar 

  48. Krautkramer, K. A., Fan, J. & Bäckhed, F. Gut microbial metabolites as multi-kingdom intermediates. Nat. Rev. Microbiol. 19, 77–94 (2021).

    Article  CAS  PubMed  Google Scholar 

  49. Zelante, T. et al. Tryptophan catabolites from microbiota engage aryl hydrocarbon receptor and balance mucosal reactivity via interleukin-22. Immunity 39, 372–385 (2013).

    Article  CAS  PubMed  Google Scholar 

  50. Choi, S. C. et al. Gut microbiota dysbiosis and altered tryptophan catabolism contribute to autoimmunity in lupus-susceptible mice. Sci. Transl. Med. 12, eaax2220 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Lind, N. A., Rael, V. E., Pestal, K., Liu, B. & Barton, G. M. Regulation of the nucleic acid-sensing Toll-like receptors. Nat. Rev. Immunol. 22, 224–235 (2022).

    Article  CAS  PubMed  Google Scholar 

  52. El-Zayat, S. R., Sibaii, H. & Mannaa, F. A. Toll-like receptors activation, signaling, and targeting: an overview. Bull. Natl Res. Cent. 43, 1–12 (2019).

    Article  Google Scholar 

  53. Elloumi, N. et al. Role of innate immune receptors TLR4 and TLR2 polymorphisms in systemic lupus erythematosus susceptibility. Ann. Hum. Genet. 86, 137–144 (2022).

    Article  CAS  PubMed  Google Scholar 

  54. Wesemann, D. R. Microbes and B cell development. Adv. Immunol. 125, 155–178 (2015).

    Article  CAS  PubMed  Google Scholar 

  55. Greiling, T. M. et al. Commensal orthologs of the human autoantigen Ro60 as triggers of autoimmunity in lupus. Sci. Transl. Med. 10, eaan2306 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  56. Maynard, C. L., Elson, C. O., Hatton, R. D. & Weaver, C. T. Reciprocal interactions of the intestinal microbiota and immune system. Nature 489, 231–241 (2012).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  57. Kennedy, E., King, K. Y. & Baldrige, M. T. Mouse microbiota models: comparing germ-free mice and antibiotics treatment as tools for modifying gut bacteria. Front. Physiol. 9, 1534 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  58. Chung, H. et al. Gut immune maturation depends on colonization with a host-specific microbiota. Cell 149, 1578–1593 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Ma, Y. et al. Gut microbiota promote the inflammatory response in the pathogenesis of systemic lupus erythematosus. Mol. Med. 25, 35 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  60. Ma, Y. et al. Lupus gut microbiota transplants cause autoimmunity and inflammation. Clin. Immunol. 233, 108892 (2021).

    Article  CAS  PubMed  Google Scholar 

  61. Moeller, A. H. et al. SIV-induced instability of the chimpanzee gut microbiome. Cell Host Microbe 14, 340–345 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Lederberg, J. & McCray, A. T. Ome SweetOmics — A genealogical treasury of words. Scientist 15, 8–8 (2001).

    Google Scholar 

  63. Wells, J. M. Homeostasis of the gut barrier and potential biomarkers. Am. J. Physiol. Gastrointest. Liver Physiol. 312, G171–G193 (2017).

    Article  PubMed  Google Scholar 

  64. Sterlin, D. et al. Human IgA binds a diverse array of commensal bacteria. J. Exp. Med. 217, e20181635 (2020).

    Article  PubMed  Google Scholar 

  65. Sonnenberg, G. F. et al. Innate lymphoid cells promote anatomical containment of lymphoid-resident commensal bacteria. Science 336, 1321–1325 (2012).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  66. Fung, T. C. et al. Lymphoid-tissue-resident commensal bacteria promote members of the IL-10 cytokine family to establish mutualism. Immunity 44, 634–646 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Manfredo Vieira, S. et al. Translocation of a gut pathobiont drives autoimmunity in mice and humans. Science 359, 1156–1161 (2018).

    Article  ADS  CAS  PubMed  Google Scholar 

  68. Azzouz, D. et al. Lupus nephritis is linked to disease-activity associated expansions and immunity to a gut commensal. Ann. Rheum. Dis. 78, 947–956 (2019).

    Article  CAS  PubMed  Google Scholar 

  69. Mishra, S. P. et al. Microbiota induces aging-related leaky gut and inflammation by dampening mucin barriers and butyrate-FFAR2/3 signaling. Preprint at bioRxiv https://doi.org/10.1101/2021.08.18.456856 (2021).

  70. Ma, L. & Morel, L. Loss of gut barrier integrity in lupus. Front. Immunol. 13, 919792 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Natividad, J. M. & Verdu, E. F. Modulation of intestinal barrier by intestinal microbiota: pathological and therapeutic implications. Pharmacol. Res. 69, 42–51 (2013).

    Article  CAS  PubMed  Google Scholar 

  72. Flannigan, K. L. & Denning, T. L. Segmented filamentous bacteria‐induced immune responses: a balancing act between host protection and autoimmunity. Immunol 154, 537–546 (2018).

    Article  CAS  Google Scholar 

  73. Gaboriau-Routhiau, V. et al. The key role of segmented filamentous bacteria in the coordinated maturation of gut helper T cell responses. Immunity 31, 677–689 (2009).

    Article  CAS  PubMed  Google Scholar 

  74. Ivanov, I. I. et al. Induction of intestinal Th17 cells by segmented filamentous bacteria. Cell 139, 485–498 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Valiente, G. R. et al. Gut dysbiosis is associated with acceleration of lupus nephritis. Sci. Rep. 12, 152 (2022).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  76. Mu, Q. et al. Control of lupus nephritis by changes of gut microbiota. Microbiome 5, 73 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  77. Zegarra-Ruiz, D. F. et al. A diet-sensitive commensal lactobacillus strain mediates TLR7-dependent systemic autoimmunity. Cell Host Microbe 25, 113–127.e6 (2019).

    Article  CAS  PubMed  Google Scholar 

  78. Thim-Uam, A. et al. Leaky-gut enhanced lupus progression in the Fc gamma receptor-IIb deficient and pristane-induced mouse models of lupus. Sci. Rep. 10, 1–18 (2020).

    Article  Google Scholar 

  79. Brown, J. Microbiota-mediated skewing of tryptophan catabolism modulates CD4+ T cells in lupus-prone mice. iScience 25, 104241 (2022).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  80. Yang, Y. et al. Within-host evolution of a gut pathobiont facilitates liver translocation. Nature 607, 563–570 (2022).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  81. Nakamoto, N. et al. Gut pathobionts underlie intestinal barrier dysfunction and liver T helper 17 cell immune response in primary sclerosing cholangitis. Nat. Microbiol. 4, 492–503 (2019).

    Article  CAS  PubMed  Google Scholar 

  82. Bagavant, H. et al. Immune response to enterococcus gallinarum in lupus patients is associated with a subset of lupus-associated autoantibodies. Front. Immunol. 12, 635072 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Tajik, N. et al. Targeting zonulin and intestinal epithelial barrier function to prevent onset of arthritis. Nat. Commun. 11, 1–14 (2020).

    Article  ADS  Google Scholar 

  84. Audo, R. et al. Rheumatoid arthritis is associated with increased gut permeability and bacterial translocation that are reversed by inflammation control. Rheumatology 62, 1264–1271 (2023).

    Article  Google Scholar 

  85. Romero-Figueroa, M. D. S., Ramírez-Durán, N., Montiel-Jarquín, A. J. & Horta-Baas, G. Gut-joint axis: gut dysbiosis can contribute to the onset of rheumatoid arthritis via multiple pathways. Front. Cell. Infect. Microbiol. 13, 56 (2023).

    Article  Google Scholar 

  86. Ogunrinde, E. et al. A link between plasma microbial translocation, microbiome, and autoantibody development in first-degree relatives of systemic lupus erythematosus patients. Arthritis Rheumatol. 71, 1858–1868 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Troisi, J. et al. The therapeutic use of the zonulin inhibitor AT-1001 (Larazotide) for a variety of acute and chronic inflammatory diseases. Curr. Med. Chem. 28, 5788–5807 (2021).

    Article  CAS  PubMed  Google Scholar 

  88. Fasano, A. All disease begins in the (leaky) gut: role of zonulin-mediated gut permeability in the pathogenesis of some chronic inflammatory diseases [version 1; peer review: 3 approved]. F1000Research https://doi.org/10.12688/f1000research.20510.1 (2020).

  89. Silverman, G. J., Deng, J. & Azzouz, D. F. Sex-dependent Lupus Ruminococcus blautia gnavus strain induction of zonulin-mediated intestinal permeability and autoimmunity. Front. Immunol. 13, 897971 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Clancy, R. M. et al. Gut dysbiosis and the clinical spectrum in anti-Ro positive mothers of children with neonatal lupus. Gut Microbes 14, 2081474 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  91. Chen, Y. et al. Gut microbiota in systemic lupus erythematosus: a fuse and a solution. J. Autoimmun. 132, 102867 (2022).

    Article  CAS  PubMed  Google Scholar 

  92. Guo, M. et al. Alteration in gut microbiota is associated with dysregulation of cytokines and glucocorticoid therapy in systemic lupus erythematosus. Gut Microbes 11, 1758–1773 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  93. Hevia, A. et al. Intestinal dysbiosis associated with systemic lupus erythematosus. mBio 5, e01548–01514 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. He, Z., Shao, T., Li, H., Xie, Z. & Wen, C. Alterations of the gut microbiome in Chinese patients with systemic lupus erythematosus. Gut Pathog. 8, 1–7 (2016).

    Article  Google Scholar 

  95. Vujkovic-Cvijin, I. et al. Host variables confound gut microbiota studies of human disease. Nature 587, 448–454 (2020).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  96. Luo, X. M. et al. Gut microbiota in human systemic lupus erythematosus and a mouse model of lupus. Appl. Environ. Microbiol. 84, e02288–e02317 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  97. Bellocchi, C. et al. Identification of a shared microbiomic and metabolomic profile in systemic autoimmune diseases. J. Clin. Med. 8, 1291 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. van der Meulen, T. A. et al. Shared gut, but distinct oral microbiota composition in primary Sjögren’s syndrome and systemic lupus erythematosus. J. Autoimmun. 97, 77–87 (2019).

    Article  PubMed  Google Scholar 

  99. Li, Y. et al. Disordered intestinal microbes are associated with the activity of systemic lupus erythematosus. Clin. Sci. 133, 821–838 (2019).

    Article  CAS  Google Scholar 

  100. Zhang, H., Liao, X., Sparks, J. B. & Luo, X. M. Dynamics of gut microbiota in autoimmune lupus. Appl. Environ. Microbiol. 80, 7551–7560 (2014).

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  101. Sokol, H. et al. Faecalibacterium prausnitzii is an anti-inflammatory commensal bacterium identified by gut microbiota analysis of Crohn disease patients. Proc. Natl Acad. Sci. USA 105, 16731–16736 (2008).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  102. Chen, B. D. et al. An autoimmunogenic and proinflammatory profile defined by the gut microbiota of patients with untreated systemic lupus erythematosus. Arthritis Rheumatol. 73, 232–243 (2021).

    Article  CAS  PubMed  Google Scholar 

  103. Silverman, G.J., Azzouz, D., Grönwall, C., Gunnarsson, I. & Svenungsson, E. Validation of a serologic antibody biomarker against a candidate gut pathobiont for the diagnosis of lupus nephritis [abstract]. Arthritis Rheumatol. 71 (2019).

  104. Toumi, E. et al. Gut microbiota in systemic lupus erythematosus patients and lupus mouse model: a cross species comparative analysis for biomarker discovery. Front. Immunol. 13, 943241 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Boccitto, M. & Wolin, S. L. Ro60 and Y RNAs: structure, functions, and roles in autoimmunity. Crit. Rev. Biochem. Mol. Biol. 54, 133–152 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Kim, J. W., Kwok, S. K., Choe, J. Y. & Park, S. H. Recent advances in our understanding of the link between the intestinal microbiota and systemic lupus erythematosus. Int. J. Mol. Sci. 20, 4871 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Moore, W. C., Johnson, J. & Holdeman, L. Emendation of Bacteroidaceae and Butyrivibrio and descriptions of Desulfomonas gen. nov. and ten new species in the genera Desulfomonas, Butyrivibrio, Eubacterium, Clostridium, and Ruminococcus. Int. J. Syst. Evolut. Microbiol. 26, 238–252 (1976).

    Google Scholar 

  108. Togo, A. H. et al. Description of Mediterraneibacter massiliensis, gen. nov., sp. nov., a new genus isolated from the gut microbiota of an obese patient and reclassification of Ruminococcus faecis, Ruminococcus lactaris, Ruminococcus torques, Ruminococcus gnavus and Clostridium glycyrrhizinilyticum as Mediterraneibacter faecis comb. nov., Mediterraneibacter lactaris comb. nov., Mediterraneibacter torques comb. nov., Mediterraneibacter gnavus comb. nov. and Mediterraneibacter glycyrrhizinilyticus comb. nov. Antonie Van. Leeuwenhoek 111, 2107–2128 (2018).

    Article  CAS  PubMed  Google Scholar 

  109. Crost, E. H., Coletto, E., Bell, A. & Juge, N. Ruminococcus gnavus: friend or foe for human health. FEMS Microbiol. Rev. 47, fuad014 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Liu, C., Finegold, S. M., Song, Y. & Lawson, P. A. Reclassification of Clostridium coccoides, Ruminococcus hansenii, Ruminococcus hydrogenotrophicus, Ruminococcus luti, Ruminococcus productus and Ruminococcus schinkii as Blautia coccoides gen. nov., comb. nov., Blautia hansenii comb. nov., Blautia hydrogenotrophica comb. nov., Blautia luti comb. nov., Blautia producta comb. nov., Blautia schinkii comb. nov. and description of Blautia wexlerae sp. nov., isolated from human faeces. Int. J. Syst. Evol. Microbiol. 58, 1896–1902 (2008).

    Article  CAS  PubMed  Google Scholar 

  111. Qin, J. et al. A human gut microbial gene catalogue established by metagenomic sequencing. Nature 464, 59–65 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Hall, A. B. et al. A novel Ruminococcus gnavus clade enriched in inflammatory bowel disease patients. Genome Med. 9, 1–12 (2017).

    Article  Google Scholar 

  113. Joossens, M. et al. Dysbiosis of the faecal microbiota in patients with Crohn’s disease and their unaffected relatives. Gut 60, 631–637 (2011).

    Article  PubMed  Google Scholar 

  114. Nishino, K. et al. Analysis of endoscopic brush samples identified mucosa-associated dysbiosis in inflammatory bowel disease. J. Gastroenterol. 53, 95–106 (2018).

    Article  PubMed  Google Scholar 

  115. Franzosa, E. A. et al. Gut microbiome structure and metabolic activity in inflammatory bowel disease. Nat. Microbiol. 4, 293–305 (2019).

    Article  CAS  PubMed  Google Scholar 

  116. Lloyd-Price, J. et al. Multi-omics of the gut microbial ecosystem in inflammatory bowel diseases. Nature 569, 655–662 (2019).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  117. Breban, M. et al. Faecal microbiota study reveals specific dysbiosis in spondyloarthritis. Ann. Rheum. Dis. 76, 1614–1622 (2017).

    Article  CAS  PubMed  Google Scholar 

  118. Henke, M. T. et al. Ruminococcus gnavus, a member of the human gut microbiome associated with Crohn’s disease, produces an inflammatory polysaccharide. Proc. Natl Acad. Sci. USA 116, 12672–12677 (2019).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  119. Henke, M. T. et al. Capsular polysaccharide correlates with immune response to the human gut microbe Ruminococcus gnavus. Proc. Natl Acad. Sci. USA 118, e2007595118 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Bell, A. et al. Elucidation of a sialic acid metabolism pathway in mucus-foraging Ruminococcus gnavus unravels mechanisms of bacterial adaptation to the gut. Nat. Microbiol. 4, 2393–2404 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  121. Tailford, L. E. et al. Discovery of intramolecular trans-sialidases in human gut microbiota suggests novel mechanisms of mucosal adaptation. Nat. Commun. 6, 7624 (2015).

    Article  ADS  PubMed  Google Scholar 

  122. Owen, C. D. et al. Unravelling the specificity and mechanism of sialic acid recognition by the gut symbiont Ruminococcus gnavus. Nat. Commun. 8, 2196 (2017).

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  123. Thompson, K. N. et al. Alterations in the gut microbiome implicate key taxa and metabolic pathways across inflammatory arthritis phenotypes. Sci. Transl. Med. 15, eabn4722 (2023).

    Article  CAS  PubMed  Google Scholar 

  124. Vatanen, T. et al. The human gut microbiome in early-onset type 1 diabetes from the TEDDY study. Nature 562, 589–594 (2018).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  125. McCarthy, S. et al. Altered skin and gut microbiome in hidradenitis suppurativa. J. Invest. Dermatol. 142, 459–468 e415 (2022).

    Article  CAS  PubMed  Google Scholar 

  126. Liu, Q. et al. Gut microbiota dynamics in a prospective cohort of patients with post-acute COVID-19 syndrome. Gut 71, 544–552 (2022).

    Article  CAS  PubMed  Google Scholar 

  127. Tiniakou, E., Costenbader, K. H. & Kriegel, M. A. Sex-specific environmental influences on the development of autoimmune diseases. Clin. Immunol. 149, 182–191 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Sutcliffe, I. C. & Russell, R. Lipoproteins of Gram-positive bacteria. J. Bacteriol. 177, 1123–1128 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Gisch, N. et al. Structural reevaluation of Streptococcus pneumoniae lipoteichoic acid and new insights into its immunostimulatory potency. J. Biol. Chem. 288, 15654–15667 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Gisch, N. et al. Structural analysis and immunostimulatory potency of lipoteichoic acids isolated from three Streptococcus suis serotype 2 strains. J. Biol. Chem. 293, 12011–12025 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Vujkovic-Cvijin, I. et al. The systemic anti-microbiota IgG repertoire can identify gut bacteria that translocate across gut barrier surfaces. Sci. Transl. Med. 14, eabl3927 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Chriswell, M. E. et al. Clonal IgA and IgG autoantibodies from individuals at risk for rheumatoid arthritis identify an arthritogenic strain of Subdoligranulum. Sci. Transl. Med. 14, eabn5166 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Silverman, G. J., Deng, J. & Azzouz, D. F. Sex-dependent Lupus Blautia (Ruminococcus) gnavus strain induction of zonulin-mediated intestinal permeability and autoimmunity. Front. Immunol. 13, 897971 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Amarnani, A. et al. Lupus nephritis flares linked to platelet activation during gut pathobiont blooms [abstract]. Arthritis Rheumatol. 75 (2023).

  135. Sasso, E. H., Silverman, G. J. & Mannik, M. Human IgM molecules that bind staphylococcal protein A contain VHIII H chains. J. Immunol. 142, 2778–2783 (1989).

    Article  CAS  PubMed  Google Scholar 

  136. Graille, M. et al. Crystal structure of a Staphylococcus aureus protein A domain complexed with the Fab fragment of a human IgM antibody: structural basis for recognition of B-cell receptors and superantigen activity. Proc. Natl Acad. Sci. USA 97, 5399–5404 (2000).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  137. Silverman, G. J. & Goodyear, C. S. Confounding B-cell defences: lessons from a staphylococcal superantigen. Nat. Rev. Immunol. 6, 465–475 (2006).

    Article  CAS  PubMed  Google Scholar 

  138. Pauli, N. T. et al. Staphylococcus aureus infection induces protein A-mediated immune evasion in humans. J. Exp. Med. 211, 2331–2339 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Ulloa-Morales, A., Goodyear, C. & Silverman, G. Essential domain-dependent roles within soluble IgG for in vivo superantigen properties of staphylococcal protein A: resolving the B-cell superantigen paradox. Front. Immunol. 9, 2011 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  140. Bunker, J. J. et al. B cell superantigens in the human intestinal microbiota. Sci. Transl. Med. 11, eaau9356 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  141. Borowska, M. T. The molecular characterization of antibody binding to a superantigen-like protein from a commensal microbe. Proc. Natl Acad. Sci. USA 118, e2023898118 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Piróg, A. et al. Two bacterial small heat shock proteins, IbpA and IbpB, form a functional heterodimer. J. Mol. Biol. 433, 167054 (2021).

    Article  PubMed  Google Scholar 

  143. Wen, M. et al. Correlation analysis between gut microbiota and metabolites in children with systemic lupus erythematosus. J. Immunol. Res. 2021, 5579608 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  144. Tsigalou, C., Konstantinidis, T., Aloizou, A.-M., Bezirtzoglou, E. & Tsakris, A. in: Role of Microorganisms in Pathogenesis and Management of Autoimmune Diseases: Volume II: Kidney, Central Nervous System, Eye, Blood, Blood Vessels & Bowel. 489–520 (Springer, 2023).

  145. Mishima, Y. & Sartor, R. B. Manipulating resident microbiota to enhance regulatory immune function to treat inflammatory bowel diseases. J. Gastroenterol. 55, 4–14 (2020).

    Article  PubMed  Google Scholar 

  146. Federici, S. et al. Targeted suppression of human IBD-associated gut microbiota commensals by phage consortia for treatment of intestinal inflammation. Cell 185, 2879–2898. e2824 (2022).

    Article  CAS  PubMed  Google Scholar 

  147. Rohlke, F. & Stollman, N. Fecal microbiota transplantation in relapsing Clostridium difficile infection. Ther. Adv. Gastroenterol. 5, 403–420 (2012).

    Article  Google Scholar 

  148. Huang, C. et al. Safety and efficacy of fecal microbiota transplantation for treatment of systemic lupus erythematosus: an EXPLORER trial. J. Autoimmun. 130, 102844 (2022).

    Article  CAS  PubMed  Google Scholar 

  149. Sokol, H. et al. Fecal microbiota transplantation to maintain remission in Crohn’s disease: a pilot randomized controlled study. Microbiome 8, 1–14 (2020).

    Article  Google Scholar 

  150. Zeng, J. et al. Fecal microbiota transplantation for rheumatoid arthritis: a case report. Clin. Case Rep. 9, 906–909 (2021).

    Article  PubMed  Google Scholar 

  151. Dailey, F. E., Turse, E. P., Daglilar, E. & Tahan, V. The dirty aspects of fecal microbiota transplantation: a review of its adverse effects and complications. Curr. Opin. Pharmacol. 49, 29–33 (2019).

    Article  CAS  PubMed  Google Scholar 

  152. Clark, R. L. et al. Design of synthetic human gut microbiome assembly and butyrate production. Nat. Commun. 12, 1–16 (2021).

    Article  Google Scholar 

  153. Coras, R. et al. Baseline microbiome and metabolome are associated with response to ITIS diet in an exploratory trial in patients with rheumatoid arthritis. Clin. Transl. Med. 12, e959 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Fasano, A. Zonulin and its regulation of intestinal barrier function: the biological door to inflammation, autoimmunity, and cancer. Physiol. Rev. 91, 151–175 (2011).

    Article  CAS  PubMed  Google Scholar 

  155. Hoilat, G. J. et al. Larazotide acetate for treatment of celiac disease: a systematic review and meta-analysis of randomized controlled trials. Clin. Res. Hepatol. Gastroenterol. 46, 101782 (2022).

    Article  CAS  PubMed  Google Scholar 

  156. Hagan, T. et al. Antibiotics-driven gut microbiome perturbation alters immunity to vaccines in humans. Cell 178, 1313–1328. e1313 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. Yassour, M. et al. Natural history of the infant gut microbiome and impact of antibiotic treatment on bacterial strain diversity and stability. Sci. Transl. Med. 8, 343ra381–343ra381 (2016).

    Article  Google Scholar 

  158. Jackson, M. A. et al. Gut microbiota associations with common diseases and prescription medications in a population-based cohort. Nat. Commun. 9, 2655 (2018).

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  159. Johnson, B. M., Gaudreau, M. C., Al-Gadban, M. M., Gudi, R. & Vasu, C. Impact of dietary deviation on disease progression and gut microbiome composition in lupus-prone SNF1 mice. Clin. Exp. Immunol. 181, 323–337 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  160. Um, C. Y. et al. Association of emulsifier and highly processed food intake with circulating markers of intestinal permeability and inflammation in the cancer prevention study-3 diet assessment sub-study. Nutr. Cancer 74, 1701–1711 (2022).

    Article  CAS  PubMed  Google Scholar 

  161. Silverman, G. J., Azzouz, D. F. & Alekseyenko, A. V. Systemic lupus erythematosus and dysbiosis in the microbiome: cause or effect or both? Curr. Opin. Immunol. 61, 80–85 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  162. Wei, F. et al. Changes of intestinal flora in patients with systemic lupus erythematosus in northeast China. PLoS One 14, e0213063 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  163. Garabatos, N. & Santamaria, P. Gut microbial antigenic mimicry in autoimmunity. Front. Immunol. 13, 873607 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  164. Van Praet, J. T. et al. Commensal microbiota influence systemic autoimmune responses. EMBO J. 34, 466–474 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  165. Lécuyer, E. et al. Segmented filamentous bacterium uses secondary and tertiary lymphoid tissues to induce gut IgA and specific T helper 17 cell responses. Immunity 40, 608–620 (2014).

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

The central themes presented in this Review were originally presented in a special session on “Molecular mimicry, autoimmunity and the streptococcal connection: a common cause of autoimmune conditions” at the 2022 ACR Convergence meeting. The authors would like to thank J. Weiser, M. Henke and D. Littman for their advice, as well as R. Xavier and H. Vlamakis, E. Pamer, and E. Allen-Vercoe for providing R. gnavus strains for their research studies. Finally, the authors would like to thank J. Colton and S. Colton for their generous support. The work of the authors is supported by funds from National Institutes of Health Grants R01-AR42455 (G.J.S.), National Institutes of Health Grants P50-AR070591 (G.J.S.), National Institutes of Health Contract NIAID HHSN272201400019C (G.J.S.), National Institutes of Health 5T32AR069515-07 (A.A.), Lupus Research Alliance (G.J.S.), Judith and Stewart Colton Autoimmunity Center (G.J.S.), and P. Robert Majumder Charitable Trust (G.J.S.).

Author information

Authors and Affiliations

Authors

Contributions

All authors researched data for the article, contributed substantially to discussion of the content and reviewed and/or edited the manuscript before submission. G.J.S., A.A. and N.G. wrote the article.

Corresponding author

Correspondence to Gregg J. Silverman.

Ethics declarations

Competing interests

G.J.S. declares that NYU has been awarded US patent 11241488B2, and additional patent applications (No. 63/533,004 and 63/354,159). N.G., D.F.A and A.A. declare no competing interests.

Peer review

Peer review information

Nature Reviews Rheumatology thanks Xin Luo, Wei Jiang and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Glossary

B cell superantigen

Molecules that directly bind to and stimulate B cells via their antigen receptor, often binding to sites outside the paratopic sites that bind conventional antigens.

Commensal microbes

Resident microorganisms that coexist with a host without causing harm or necessarily receiving any mutual benefit.

Microbiome

The collective microorganisms, such as bacteria, fungi, viruses and protozoa, that live within and on the human body.

Pathobiont

A commensal microorganism that can cause disease under certain conditions, such as following a change in the host’s immune status or following an imbalance in the gut microbiota, but does not drive overt infectious disease in the host.

Pathogen

A microorganism, such as a bacterium, virus, fungus or parasite, that causes disease in its host, often through tissue destruction.

Resilience

The capacity of the gut microbiome to recover and regain balance in composition and functionality after being exposed to various stressors.

Symbiont

An organism that lives in a mutually beneficial relationship with another organism.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Silverman, G.J., Azzouz, D.F., Gisch, N. et al. The gut microbiome in systemic lupus erythematosus: lessons from rheumatic fever. Nat Rev Rheumatol 20, 143–157 (2024). https://doi.org/10.1038/s41584-023-01071-8

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41584-023-01071-8

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing