Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Perspective
  • Published:

Transforming clinical trials in rheumatology: towards patient-centric precision medicine

Abstract

Despite the success of targeted therapies in the treatment of inflammatory arthritides, the lack of predictive biomarkers drives a ‘trial and error’ approach to treatment allocation, leading to variable and/or unsatisfactory responses. In-depth characterization of the synovial tissue in rheumatoid arthritis, as well as psoriatic arthritis and spondyloarthritis, is bringing new insights into the diverse cellular and molecular features of these diseases and their potential links with different clinical and treatment-response phenotypes. Such progress raises the tantalizing prospect of improving response rates by matching the use of specific agents to the cognate target pathways that might drive particular disease subtypes in specific patient groups. Innovative patient-centric, molecular pathology-driven clinical trial approaches are needed to achieve this goal. Whilst progress is clearly being made, it is important to emphasize that this field is still in its infancy and there are a number of potential barriers to realizing the premise of patient-centric clinical trials.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Evolution of trial design in rheumatoid arthritis.
Fig. 2: Emergent biomarker-driven trial designs.
Fig. 3: Biomarker-driven trial designs.
Fig. 4: Biomarker-driven adaptive trial design.

Similar content being viewed by others

References

  1. Smolen, J. S., Aletaha, D. & Mcinnes, I. B. Rheumatoid arthritis. Lancet 388, 2023–2038 (2016).

    Article  CAS  PubMed  Google Scholar 

  2. Smolen, J. S. et al. Rheumatoid arthritis. Nat. Rev. Dis. Primers 4, 18001 (2018).

    Article  PubMed  Google Scholar 

  3. Nam, J. L. et al. Efficacy of biological disease-modifying antirheumatic drugs: a systematic literature review informing the 2016 update of the EULAR recommendations for the management of rheumatoid arthritis. Ann. Rheum. Dis. 76, 1113–1136 (2017).

    Article  PubMed  CAS  Google Scholar 

  4. Weinblatt, M. E. et al. Head-to-head comparison of subcutaneous abatacept versus adalimumab for rheumatoid arthritis: findings of a phase IIIb, multinational, prospective, randomized study. Arthritis Rheumatol. 65, 28–38 (2013).

    Article  CAS  Google Scholar 

  5. Porter, D. et al. Tumour necrosis factor inhibition versus rituximab for patients with rheumatoid arthritis who require biological treatment (ORBIT): an open-label, randomised controlled, non-inferiority, trial. Lancet 388, 239–247 (2016).

    Article  CAS  PubMed  Google Scholar 

  6. Smolen, J. S. et al. Head-to-head comparison of certolizumab pegol versus adalimumab in rheumatoid arthritis: 2-year efficacy and safety results from the randomised EXXELERATE study. Lancet 388, 2763–2774 (2016).

    Article  CAS  PubMed  Google Scholar 

  7. Smolen, J. S. & Aletaha, D. Rheumatoid arthritis therapy reappraisal: strategies, opportunities and challenges. Nat. Rev. Rheumatol. 11, 276–289 (2015).

    Article  PubMed  Google Scholar 

  8. Buch, M. H., Bingham, S. J., Bryer, D. & Emery, P. Long-term infliximab treatment in rheumatoid arthritis: subsequent outcome of initial responders. Rheumatology 46, 1153–1156 (2007).

    Article  CAS  PubMed  Google Scholar 

  9. Tak, P. P. A personalized medicine approach to biologic treatment of rheumatoid arthritis: a preliminary treatment algorithm. Rheumatology 51, 600–609 (2012).

    Article  CAS  PubMed  Google Scholar 

  10. Lewis, M. J. et al. Molecular portraits of early rheumatoid arthritis identify clinical and treatment response phenotypes. Cell Rep. 28, 2455–2470.e5 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Humby, F. et al. Synovial cellular and molecular signatures stratify clinical response to csDMARD therapy and predict radiographic progression in early rheumatoid arthritis patients. Ann. Rheum. Dis. 78, 761–772 (2019).

    Article  CAS  PubMed  Google Scholar 

  12. Lliso-Ribera, G. et al. Synovial tissue signatures enhance clinical classification and prognostic/treatment response algorithms in early inflammatory arthritis and predict requirement for subsequent biological therapy: results from the pathobiology of early arthritis cohort (PEAC). Ann. Rheum. Dis. 78, 1642–1652 (2019).

    Article  CAS  PubMed  Google Scholar 

  13. WHO Scientific Group on the Burden of Musculoskeletal Conditions at the Start of the New Millennium. The burden of musculoskeletal conditions at the start of the new millennium. World Health Organ. Tech. Rep. Ser. 919, 1–218 (2003).

    Google Scholar 

  14. Goutsouliak, K. et al. Towards personalized treatment for early stage HER2-positive breast cancer. Nat. Rev. Clin. Oncol. 244, 707–718 (2019).

    Google Scholar 

  15. Le, D. T. et al. Mismatch repair deficiency predicts response of solid tumors to PD-1 blockade. Science 357, 409–413 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Smolen, J. S. et al. EULAR recommendations for the management of rheumatoid arthritis with synthetic and biological disease-modifying antirheumatic drugs: 2019 update. Ann. Rheum. Dis. 79, 685–699 (2020).

    PubMed  Google Scholar 

  17. Cuppen, B. V. J. et al. Personalized biological treatment for rheumatoid arthritis: a systematic review with a focus on clinical applicability. Rheumatology 55, 826–839 (2016).

    Article  CAS  PubMed  Google Scholar 

  18. Taylor, P. C. et al. Clinical characteristics and patient-reported outcomes in patients with inadequately controlled rheumatoid arthritis despite ongoing treatment. RMD Open 4, e000615 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  19. Studenic, P. et al. Testing different thresholds for patient global assessment in defining remission for rheumatoid arthritis: are the current ACR/EULAR Boolean criteria optimal? Ann. Rheum. Dis. 79, 445–452 (2020).

    Article  PubMed  Google Scholar 

  20. Michelsen, B. et al. Discordance between tender and swollen joint count as well as patient’s and evaluator’s global assessment may reduce likelihood of remission in patients with rheumatoid arthritis and psoriatic arthritis: data from the prospective multicentre NOR-DMARD study. Ann. Rheum. Dis. 76, 708–711 (2017).

    Article  PubMed  Google Scholar 

  21. Hensor, E. M. A. et al. Validity of a two-component imaging-derived disease activity score for improved assessment of synovitis in early rheumatoid arthritis. Rheumatology 58, 1400–1409 (2019).

    Article  PubMed Central  Google Scholar 

  22. Tanaka, Y. et al. Discontinuation of adalimumab after achieving remission in patients with established rheumatoid arthritis: 1-year outcome of the HONOR study. Ann. Rheum. Dis. 74, 389–395 (2015).

    Article  CAS  PubMed  Google Scholar 

  23. Keystone, E. C. et al. Toward defining primary and secondary nonresponse in rheumatoid arthritis patients treated with anti-TNF: results from the BioTRAC and OBRI registries. J. Rheumatol. 47, 510–517 (2020).

    Article  PubMed  Google Scholar 

  24. Alzabin, S. et al. Incomplete response of inflammatory arthritis to TNFα blockade is associated with the Th17 pathway. Ann. Rheum. Dis. 71, 1741–1748 (2012).

    Article  CAS  PubMed  Google Scholar 

  25. Strand, V. et al. Immunogenicity of biologics in chronic inflammatory diseases: a systematic review. BioDrugs 31, 299–316 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Buch, M. H. et al. The value of synovial cytokine expression in predicting the clinical response to TNF antagonist therapy (infliximab). Rheumatology 47, 1469–1475 (2008).

    Article  CAS  PubMed  Google Scholar 

  27. Kumar, K. et al. Determinants of adherence to disease modifying anti-rheumatic drugs in White British and South Asian patients with rheumatoid arthritis: a cross sectional study. BMC Musculoskelet. Disord. 16, 311–396 (2015).

    Article  CAS  Google Scholar 

  28. Buch, M. H., Pavitt, S., Parmar, M. & Emery, P. Creative trial design in RA: optimizing patient outcomes. Nat. Rev. Rheumatol. 9, 183–194 (2013).

    Article  CAS  PubMed  Google Scholar 

  29. Pitzalis, C., Kelly, S. & Humby, F. New learnings on the pathophysiology of RA from synovial biopsies. Curr. Opin. Rheumatol. 25, 334–344 (2013).

    Article  PubMed  Google Scholar 

  30. Blanco, F. J. et al. Secukinumab in active rheumatoid arthritis: a phase III randomized, double-blind, active comparator- and placebo-controlled study. Arthritis Rheumatol. 69, 1144–1153 (2017).

    Article  CAS  PubMed  Google Scholar 

  31. Cañete, J. D. et al. Ectopic lymphoid neogenesis is strongly associated with activation of the IL-23 pathway in rheumatoid synovitis. Arthritis Res. Ther. 17, 173 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  32. Fleischmann, R., Landewé, R. & Smolen, J. S. Review of head-to-head study designs in rheumatoid arthritis. Semin. Arthritis Rheum. 46, 279–285 (2016).

    Article  Google Scholar 

  33. Vashisht, P., Sayles, H., Cannella, A. C., Mikuls, T. R. & Michaud, K. Generalizability of patients with rheumatoid arthritis in biologic agent clinical trials. Arthritis Care Res. 68, 1478–1488 (2016).

    Article  CAS  Google Scholar 

  34. Park, J. J. H. et al. Systematic review of basket trials, umbrella trials, and platform trials: a landscape analysis of master protocols. Trials 20, 510–572 (2019).

    Article  CAS  Google Scholar 

  35. Isaacs, J. D. et al. Effect of baseline rheumatoid factor and anticitrullinated peptide antibody serotype on rituximab clinical response: a meta-analysis. Ann. Rheum. Dis. 72, 329–336 (2013).

    Article  CAS  PubMed  Google Scholar 

  36. Gerlag, D. M. et al. Effects of B-cell directed therapy on the preclinical stage of rheumatoid arthritis: the PRAIRI study. Ann. Rheum. Dis. 78, 179–185 (2019).

    Article  CAS  PubMed  Google Scholar 

  37. Miyagawa, I. et al. Precision medicine using different biological DMARDs based on characteristic phenotypes of peripheral T helper cells in psoriatic arthritis. Rheumatology 58, 336–344 (2019).

    Article  CAS  PubMed  Google Scholar 

  38. Badot, V. et al. Gene expression profiling in the synovium identifies a predictive signature of absence of response to adalimumab therapy in rheumatoid arthritis. Arthritis Res. Ther. 11, R57 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  39. De Groof, A. et al. Higher expression of TNFα-induced genes in the synovium of patients with early rheumatoid arthritis correlates with disease activity, and predicts absence of response to first line therapy. Arthritis Res. Ther. 18, 19 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  40. Ducreux, J. et al. Global molecular effects of tocilizumab therapy in rheumatoid arthritis synovium. Arthritis Rheumatol. 66, 15–23 (2013).

    Article  CAS  Google Scholar 

  41. Gutierrez-Roelens, I. et al. Rituximab treatment induces the expression of genes involved in healing processes in the rheumatoid arthritis synovium. Arthritis Rheumatol. 63, 1246–1254 (2011).

    Article  CAS  Google Scholar 

  42. Hogan, V. E. et al. Pretreatment synovial transcriptional profile is associated with early and late clinical response in rheumatoid arthritis patients treated with rituximab. Ann. Rheum. Dis. 71, 1888–1894 (2012).

    Article  CAS  PubMed  Google Scholar 

  43. EU Clinical Trials Register. EudraCT number: 2014-003529-16. European Medicines Agency https://www.clinicaltrialsregister.eu/ctr-search/search?query=eudract_number:2014-003529-16 (2020).

  44. EU Clinical Trials Register. ClinicalTrialsRegister.eu, EudraCT number: 2012-002535-28. European Medicines Agency https://www.clinicaltrialsregister.eu/ctr-search/search?query=eudract_number:2012-002535-28 (2020).

  45. Kelly, S. et al. Ultrasound-guided synovial biopsy: a safe, well-tolerated and reliable technique for obtaining high-quality synovial tissue from both large and small joints in early arthritis patients. Ann. Rheum. Dis. 74, 611–617 (2015).

    Article  CAS  PubMed  Google Scholar 

  46. Just, S. A. et al. Patient-reported outcomes and safety in patients undergoing synovial biopsy: comparison of ultrasound-guided needle biopsy, ultrasound-guided portal and forceps and arthroscopic-guided synovial biopsy techniques in five centres across Europe. RMD Open 4, e000799 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  47. Antoniou, M., Kolamunnage-Dona, R. & Jorgensen, A. L. Biomarker-guided non-adaptive trial designs in phase II and phase III: a methodological review. J. Pers. Med. 7, 1 (2017).

    Article  PubMed Central  Google Scholar 

  48. Antoniou, M., Jorgensen, A. L. & Kolamunnage-Dona, R. Biomarker-guided adaptive trial designs in phase II and phase III: a methodological review. PLoS ONE 11, e0149803 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  49. Ulfgren, A. K. et al. Systemic anti-tumor necrosis factor alpha therapy in rheumatoid arthritis down-regulates synovial tumor necrosis factor alpha synthesis. Arthritis Rheum. 43, 2391–2396 (2000).

    Article  CAS  PubMed  Google Scholar 

  50. Dennis, G. et al. Synovial phenotypes in rheumatoid arthritis correlate with response to biologic therapeutics. Arthritis Res. Ther. 16, R90 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  51. Biankin, A. V., Piantadosi, S. & Hollingsworth, S. J. Patient-centric trials for therapeutic development in precision oncology. Nature 526, 361–370 (2015).

    Article  CAS  PubMed  Google Scholar 

  52. Choy, E. H., Kavanaugh, A. F. & Jones, S. A. The problem of choice: current biologic agents and future prospects in RA. Nat. Rev. Rheumatol. 9, 154–163 (2013).

    Article  CAS  PubMed  Google Scholar 

  53. Ogata, A., Kato, Y., Higa, S. & Yoshizaki, K. IL-6 inhibitor for the treatment of rheumatoid arthritis: a comprehensive review. Mod. Rheumatol. 29, 258–267 (2019).

    Article  CAS  PubMed  Google Scholar 

  54. Sieper, J., Porter-Brown, B., Thompson, L., Harari, O. & Dougados, M. Assessment of short-term symptomatic efficacy of tocilizumab in ankylosing spondylitis: results of randomised, placebo-controlled trials. Ann. Rheum. Dis. 73, 95–100 (2014).

    Article  CAS  PubMed  Google Scholar 

  55. Wu, D. et al. Meta-analysis of IL-17 inhibitors in two populations of rheumatoid arthritis patients: biologic-naive or tumor necrosis factor inhibitor inadequate responders. Clin. Rheumatol. 365, 2205–2210 (2019).

    Google Scholar 

  56. Smolen, J. S. et al. A randomised phase II study evaluating the efficacy and safety of subcutaneously administered ustekinumab and guselkumab in patients with active rheumatoid arthritis despite treatment with methotrexate. Ann. Rheum. Dis. 76, 831–839 (2017).

    Article  CAS  PubMed  Google Scholar 

  57. Poddubnyy, D., Hermann, K.-G. A., Callhoff, J., Listing, J. & Sieper, J. Ustekinumab for the treatment of patients with active ankylosing spondylitis: results of a 28-week, prospective, open-label, proof-of-concept study (TOPAS). Ann. Rheum. Dis. 73, 817–823 (2014).

    Article  CAS  PubMed  Google Scholar 

  58. Deodhar, A. et al. Three multicenter, randomized, double-blind, placebo-controlled studies evaluating the efficacy and safety of ustekinumab in axial spondyloarthritis. Arthritis Rheumatol. 71, 258–270 (2019).

    Article  CAS  PubMed  Google Scholar 

  59. Baeten, D. et al. Risankizumab, an IL-23 inhibitor, for ankylosing spondylitis: results of a randomised, double-blind, placebo-controlled, proof-of-concept, dose-finding phase 2 study. Ann. Rheum. Dis. 77, 1295–1302 (2018).

    Article  CAS  PubMed  Google Scholar 

  60. Schett, G. & Firestein, G. S. Mr Outside and Mr Inside: classic and alternative views on the pathogenesis of rheumatoid arthritis. Ann. Rheum. Dis. 69, 787–789 (2010).

    Article  PubMed  Google Scholar 

  61. Merashli, M., De Marco, G., Podgorski, M., McGonagle, D. & Marzo-Ortega, H. Evidence of response to IL-6 inhibition in some cases of refractory spondyloarthritis-associated peripheral synovitis. Ann. Rheum. Dis. 75, 1418–1420 (2016).

    Article  CAS  PubMed  Google Scholar 

  62. U.S. Food and Drug Administration. Adaptive design clinical trials for drugs and biologics: guidance for industry. FDA https://www.fda.gov/media/78495/download (2019).

  63. Antoniou, M. et al. Biomarker-guided trials: challenges in practice. Contemp. Clin. Trials Commun. 16, 100493 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Humby, F. et al. Use of ultrasound-guided small joint biopsy to evaluate the histopathologic response to rheumatoid arthritis therapy: recommendations for application to clinical trials. Arthritis Rheumatol. 67, 2601–2610 (2015).

    Article  PubMed  Google Scholar 

  65. Barton, A. & Pitzalis, C. Stratified medicine in rheumatoid arthritis-the MATURA programme. Rheumatology 56, 1247–1250 (2017).

    Article  PubMed  Google Scholar 

  66. Pickles, T. et al. Adaptive trial designs in rheumatology: report from the OMERACT Special Interest Group. J. Rheumatol. 46, 1406–1408 (2019).

    Article  PubMed  Google Scholar 

  67. Mandelin, A. M. et al. Transcriptional profiling of synovial macrophages using minimally invasive ultrasound-guided synovial biopsies in rheumatoid arthritis. Arthritis Rheumatol. 70, 841–854 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Donlin, L. T. et al. Methods for high-dimensonal analysis of cells dissociated from cyropreserved synovial tissue. Arthritis Res. Ther. 20, 139 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  69. Zhang, F. et al. Defining inflammatory cell states in rheumatoid arthritis joint synovial tissues by integrating single-cell transcriptomics and mass cytometry. Nat. Immunol. 20, 928–942 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  70. Mease, P. J. et al. The efficacy and safety of clazakizumab, an anti-interleukin-6 monoclonal antibody, in a phase IIb study of adults with active psoriatic arthritis. Arthritis Rheumatol. 68, 2163–2173 (2016).

    Article  CAS  PubMed  Google Scholar 

  71. Tahir, H. et al. Secukinumab in active rheumatoid arthritis after anti-TNFα therapy: a randomized, double-blind placebo-controlled phase 3 study. Rheumatol. Ther. 4, 475–488 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

C.P., E.H.S.C. and M.H.B. made substantial contributions to discussion of the content and researched data for the article; C.P. wrote the article and C.P., E.H.S.C. and M.H.B. reviewed and edited the manuscript before submission.

Corresponding author

Correspondence to Costantino Pitzalis.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information

Nature Reviews Rheumatology thanks A. Jorgensen and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pitzalis, C., Choy, E.H.S. & Buch, M.H. Transforming clinical trials in rheumatology: towards patient-centric precision medicine. Nat Rev Rheumatol 16, 590–599 (2020). https://doi.org/10.1038/s41584-020-0491-4

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41584-020-0491-4

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing