Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Clinical value of DNA methylation markers in autoimmune rheumatic diseases

Abstract

Methylation of cytosine residues in DNA, the best studied epigenetic modification, is associated with gene transcription and nuclear organization, and ultimately the function of a cell. DNA methylation can be influenced by various factors, including changes in neighbouring genomic sites such as those induced by transcription factor binding. The DNA methylation profiles in relevant cell types are altered in most human diseases compared with the healthy state. Given the physical stability of DNA and methylated DNA compared with other epigenetic modifications, DNA methylation is an ideal marker for clinical purposes. However, few DNA methylation-based markers have made it into clinical practice, with the notable exception of some markers used in the field of oncology. Autoimmune rheumatic diseases are genetically complex entities that can vary widely in terms of prognosis, subtypes, progression and treatment responses. Increasing reports showing strong links between DNA methylation profiles and different clinical outcomes and other clinical aspects in autoimmune rheumatic diseases reinforce the usefulness of DNA methylation profiles as novel clinical markers. In this Review, we provide an updated discussion on DNA methylation alterations in autoimmune rheumatic diseases and the advantages and disadvantages of using these markers in clinical practice.

Key points

  • DNA methylation patterns are cell type specific, and particular patterns are associated with gene transcription and cellular function; aberrant DNA methylation profiles are associated with pathogenic cell phenotypes.

  • Genetic susceptibility variants and environmental cues, in conjunction with nuclear factors, can influence the DNA methylation profiles of immune cells.

  • Particular DNA methylation alterations are associated with the subtype, activity, progression and/or response to therapy of various autoimmune rheumatic diseases.

  • The stability of methylated cytosines, and their physical association with the DNA, make these markers ideally suited for clinical purposes.

  • For the future development of practical and useful DNA methylation-based markers, further studies that include large cohorts of patients and relevant cell types are needed.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Genetic and environment influences on DNA methylation.
Fig. 2: Clinical applications for DNA methylation markers in autoimmune rheumatic disease.

Similar content being viewed by others

References

  1. Rakyan, V. K., Down, T. A., Balding, D. J. & Beck, S. Epigenome-wide association studies for common human diseases. Nat. Rev. Genet. 12, 529–541 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Javierre, B. M. et al. Changes in the pattern of DNA methylation associate with twin discordance in systemic lupus erythematosus. Genome Res. 20, 170–179 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Zhao, M. et al. DNA methylation and mRNA and microRNA expression of SLE CD4+ T cells correlate with disease phenotype. J. Autoimmun. 54, 127–136 (2014).

    CAS  PubMed  Google Scholar 

  4. Mok, A. et al. Hypomethylation of CYP2E1 and DUSP22 promoters associated with disease activity and erosive disease among rheumatoid arthritis patients. Arthritis Rheumatol. 70, 528–536 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Rodríguez-Ubreva, J. et al. Inflammatory cytokines shape a changing DNA methylome in monocytes mirroring disease activity in rheumatoid arthritis. Ann. Rheum. Dis. 78, 1505–1516 (2019).

    PubMed  Google Scholar 

  6. Lian, X. et al. DNA demethylation of CD40L in CD4+ T cells from women with systemic sclerosis: a possible explanation for female susceptibility. Arthritis Rheum. 64, 2338–2345 (2012).

    CAS  PubMed  Google Scholar 

  7. Imgenberg-Kreuz, J. et al. Genome-wide DNA methylation analysis in multiple tissues in primary Sjögren’s syndrome reveals regulatory effects at interferon-induced genes. Ann. Rheum. Dis. 75, 2029–2036 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Zhao, M. et al. IL-6/STAT3 pathway induced deficiency of RFX1 contributes to Th17-dependent autoimmune diseases via epigenetic regulation. Nat. Commun. 9, 583 (2018).

    PubMed  PubMed Central  Google Scholar 

  9. Ai, R. et al. Comprehensive epigenetic landscape of rheumatoid arthritis fibroblast-like synoviocytes. Nat. Commun. 9, 1921 (2018).

    PubMed  PubMed Central  Google Scholar 

  10. Tsou, P. S. et al. Inhibition of EZH2 prevents fibrosis and restores normal angiogenesis in scleroderma. Proc. Natl Acad. Sci. USA 116, 3695–3702 (2019).

    CAS  PubMed  Google Scholar 

  11. Heyn, H., Méndez-González, J. & Esteller, M. Epigenetic profiling joins personalized cancer medicine. Expert. Rev. Mol. Diagnostics 13, 473–479 (2013).

    CAS  Google Scholar 

  12. Jones, P. A., Ohtani, H., Chakravarthy, A. & De Carvalho, D. D. Epigenetic therapy in immune-oncology. Nat. Rev. Cancer 19, 151–161 (2019).

    CAS  PubMed  Google Scholar 

  13. McClay, J. L. et al. High density methylation QTL analysis in human blood via next-generation sequencing of the methylated genomic DNA fraction. Genome Biol. 16, 291 (2015).

    PubMed  PubMed Central  Google Scholar 

  14. Van Dongen, J. et al. Genetic and environmental influences interact with age and sex in shaping the human methylome. Nat. Commun. 7, 11115 (2016).

    PubMed  PubMed Central  Google Scholar 

  15. Imgenberg-Kreuz, J. et al. DNA methylation mapping identifies gene regulatory effects in patients with systemic lupus erythematosus. Ann. Rheum. Dis. 77, 736–743 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Hammaker, D. et al. LBH gene transcription regulation by the interplay of an enhancer risk allele and DNA methylation in rheumatoid arthritis. Arthritis Rheumatol. 68, 2637–2645 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Banovich, N. E. et al. Methylation QTLs are associated with coordinated changes in transcription factor binding, histone modifications, and gene expression levels. PLoS Genet. 10, e1004663 (2014).

    PubMed  PubMed Central  Google Scholar 

  18. Olsson, A. H. et al. Genome-wide associations between genetic and epigenetic variation influence mRNA expression and insulin secretion in human pancreatic islets. PLoS Genet. 10, e1004735 (2014).

    PubMed  PubMed Central  Google Scholar 

  19. Hannon, E. et al. Methylation QTLs in the developing brain and their enrichment in schizophrenia risk loci. Nat. Neurosci. 19, 48–54 (2015).

    PubMed  PubMed Central  Google Scholar 

  20. Wagner, J. R. et al. The relationship between DNA methylation, genetic and expression inter-individual variation in untransformed human fibroblasts. Genome Biol. 15, R37 (2014).

    PubMed  PubMed Central  Google Scholar 

  21. Heyn, H. et al. DNA methylation contributes to natural human variation. Genome Res. 23, 1363–1372 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Michels, K. B. et al. Recommendations for the design and analysis of epigenome-wide association studies. Nat. Methods 10, 949–955 (2013).

    CAS  PubMed  Google Scholar 

  23. Gopalan, S. et al. Trends in DNA methylation with age replicate across diverse human populations. Genetics 206, 1659–1674 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Husquin, L. T. et al. Exploring the genetic basis of human population differences in DNA methylation and their causal impact on immune gene regulation. Genome Biol. 19, 222 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Galanter, J. M. et al. Differential methylation between ethnic sub-groups reflects the effect of genetic ancestry and environmental exposures. eLife 6, e20532 (2017).

    PubMed  PubMed Central  Google Scholar 

  26. Rui, J. et al. Methylation of insulin DNA in response to proinflammatory cytokines during the progression of autoimmune diabetes in NOD mice. Diabetologia 59, 1021–1029 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Sanderson, S. M., Gao, X., Dai, Z. & Locasale, J. W. Methionine metabolism in health and cancer: a nexus of diet and precision medicine. Nat. Rev. Cancer 19, 625–637 (2019).

    CAS  PubMed  Google Scholar 

  28. Horvath, S. DNA methylation age of human tissues and cell types. Genome Biol. 14, R115 (2013).

    PubMed  PubMed Central  Google Scholar 

  29. McCarthy, N. S. et al. Meta-analysis of human methylation data for evidence of sex-specific autosomal patterns. BMC Genomics 15, 981 (2014).

    PubMed  PubMed Central  Google Scholar 

  30. Golden, L. C. et al. Parent-of-origin differences in DNA methylation of X chromosome genes in T lymphocytes. Proc. Natl Acad. Sci. USA 116, 26779–26787 (2019).

    CAS  Google Scholar 

  31. Generali, E., Ceribelli, A., Stazi, M. A. & Selmi, C. Lessons learned from twins in autoimmune and chronic inflammatory diseases. J. Autoimmunity 83, 51–61 (2017).

    CAS  Google Scholar 

  32. Ulff-Møller, C. J. et al. Twin DNA methylation profiling reveals flare-dependent interferon signature and B cell promoter hypermethylation in systemic lupus erythematosus. Arthritis Rheumatol. 70, 878–890 (2018).

    PubMed  Google Scholar 

  33. Gomez-Cabrero, D. et al. High-specificity bioinformatics framework for epigenomic profiling of discordant twins reveals specific and shared markers for ACPA and ACPA-positive rheumatoid arthritis. Genome Med. 8, 124 (2016).

    PubMed  PubMed Central  Google Scholar 

  34. Webster, A. P. et al. Increased DNA methylation variability in rheumatoid arthritis-discordant monozygotic twins. Genome Med. 10, 64 (2018).

    PubMed  PubMed Central  Google Scholar 

  35. Ramos, P. S. et al. Integrative analysis of DNA methylation in discordant twins unveils distinct architectures of systemic sclerosis subsets. Clin. Epigenetics 11, 58 (2019).

    PubMed  PubMed Central  Google Scholar 

  36. Greenberg, M. V. C. & Bourc’his, D. The diverse roles of DNA methylation in mammalian development and disease. Nat. Rev. Mol. Cell Biol. 20, 590–607 (2019).

    CAS  PubMed  Google Scholar 

  37. Charras, A. et al. Cell-specific epigenome-wide DNA methylation profile in long-term cultured minor salivary gland epithelial cells from patients with Sjögren’s syndrome. Ann. Rheum. Dis. 76, 625–628 (2017).

    CAS  PubMed  Google Scholar 

  38. Lu, Q. et al. Demethylation of ITGAL (CD11a) regulatory sequences in systemic lupus erythematosus. Arthritis Rheum. 46, 1282–1291 (2002).

    CAS  PubMed  Google Scholar 

  39. Oelke, K. et al. Overexpression of CD70 and overstimulation of IgG synthesis by lupus T cells and T cells treated with DNA methylation inhibitors. Arthritis Rheum. 50, 1850–1860 (2004).

    CAS  PubMed  Google Scholar 

  40. Lu, Q. et al. Demethylation of CD40LG on the inactive X in T cells from women with lupus. J. Immunol. 179, 6352–6358 (2007).

    CAS  PubMed  Google Scholar 

  41. Tseng, W. Y. et al. TNF receptor 2 signaling prevents DNA methylation at the Foxp3 promoter and prevents pathogenic conversion of regulatory T cells. Proc. Natl. Acad. Sci. USA 116, 21666–21672 (2019).

    CAS  PubMed  Google Scholar 

  42. Sun, X. et al. All-trans retinoic acid induces CD4+CD25+Foxp3+ regulatory T cells by increasing Foxp3 demethylation in systemic sclerosis CD4+ T cells. J. Immunol. Res. 2018, 8658156 (2018).

    PubMed  PubMed Central  Google Scholar 

  43. Richardson, B. Effect of an inhibitor of DNA methylation on T cells. II. 5-azacytidine induces self-reactivity in antigen-specific T4+ cells. Hum. Immunol. 17, 456–470 (1986).

    CAS  PubMed  Google Scholar 

  44. Patel, D. R. & Richardson, B. C. Epigenetic mechanisms in lupus. Curr. Opin. Rheumatol. 22, 478–482 (2010).

    CAS  PubMed  Google Scholar 

  45. Li, H. et al. Precision DNA demethylation ameliorates disease in lupus-prone mice. JCI Insight 3, e120880 (2018).

    PubMed Central  Google Scholar 

  46. Zhao, M. et al. Epigenetics and SLE: RFX1 downregulation causes CD11a and CD70 overexpression by altering epigenetic modifications in lupus CD4+ T cells. J. Autoimmun. 35, 58–69 (2010).

    PubMed  Google Scholar 

  47. Zhang, Q. et al. Increased Set1 binding at the promoter induces aberrant epigenetic alterations and up-regulates cyclic adenosine 5′-monophosphate response element modulator alpha in systemic lupus erythematosus. Clin. Epigenetics 8, 126 (2016).

    PubMed  PubMed Central  Google Scholar 

  48. Miller, S. et al. Hypomethylation of STAT1 and HLA-DRB1 is associated with type-I interferon-dependent HLA-DRB1 expression in lupus CD8+ T cells. Ann. Rheum. Dis. 78, 519–528 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Hedrich, C. M. et al. CAMP responsive element modulator (CREM) α mediates chromatin remodeling of CD8 during the generation of CD3+CD4CD8 T cells. J. Biol. Chem. 289, 2361–2370 (2014).

    CAS  PubMed  Google Scholar 

  50. Franks, S. E., Getahun, A., Hogarth, P. M. & Cambier, J. C. Targeting B cells in treatment of autoimmunity. Curr. Opin. Immunol. 43, 39–45 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Julià, A. et al. Epigenome-wide association study of rheumatoid arthritis identifies differentially methylated loci in B cells. Hum. Mol. Genet. 26, 2803–2811 (2017).

    PubMed  Google Scholar 

  52. Absher, D. M. et al. Genome-wide DNA methylation analysis of systemic lupus erythematosus reveals persistent hypomethylation of interferon genes and compositional changes to CD4+ T-cell populations. PLoS Genet. 9, e1003678 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Klein, K. & Gay, S. Epigenetics in rheumatoid arthritis. Curr. Opin. Rheumatol. 27, 76–82 (2015).

    CAS  PubMed  Google Scholar 

  54. Vento-Tormo, R. et al. IL-4 orchestrates STAT6-mediated DNA demethylation leading to dendritic cell differentiation. Genome Biol. 17, 4 (2016).

    PubMed  PubMed Central  Google Scholar 

  55. Garcia-Gomez, A. et al. TET2- and TDG-mediated changes are required for the acquisition of distinct histone modifications in divergent terminal differentiation of myeloid cells. Nucleic Acids Res. 45, 10002–10017 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Frank-Bertoncelj, M. et al. Epigenetically-driven anatomical diversity of synovial fibroblasts guides joint-specific fibroblast functions. Nat. Commun. 8, 14852 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Zhang, F. et al. Defining inflammatory cell states in rheumatoid arthritis joint synovial tissues by integrating single-cell transcriptomics and mass cytometry. Nat. Immunol. https://doi.org/10.1038/s41590-019-0378-1 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  58. Lettre, G. & Rioux, J. D. Autoimmune diseases: insights from genome-wide association studies. Hum. Mol. Genet. 17, R116–R121 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Acosta-Herrera, M. et al. Genome-wide meta-analysis reveals shared new loci in systemic seropositive rheumatic diseases. Ann. Rheum. Dis. 78, 311–319 (2018).

    PubMed  PubMed Central  Google Scholar 

  60. Márquez, A. et al. A combined large-scale meta-analysis identifies COG6 as a novel shared risk locus for rheumatoid arthritis and systemic lupus erythematosus. Ann. Rheum. Dis. 76, 286–294 (2017).

    PubMed  Google Scholar 

  61. Imgenberg-Kreuz, J. et al. Shared and unique patterns of DNA methylation in systemic lupus erythematosus and primary Sjögren’s syndrome. Front. Immunol. 10, 1686 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  62. Carnero-Montoro, E. et al. Epigenome-wide comparative study reveals key differences between mixed connective tissue disease and related systemic autoimmune diseases. Front. Immunol. 10, 1880 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  63. de la Rica, L. et al. PU.1 target genes undergo Tet2-coupled demethylation and DNMT3b-mediated methylation in monocyte-to-osteoclast differentiation. Genome Biol. 14, R99 (2013).

    PubMed  PubMed Central  Google Scholar 

  64. Coit, P. et al. Epigenetic reprogramming in naive CD4+ T cells favoring T cell activation and non-Th1 effector T cell immune response as an early event in lupus flares. Arthritis Rheumatol. 68, 2200–2209 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  65. Joseph, S. et al. Epigenome-wide association study of peripheral blood mononuclear cells in systemic lupus erythematosus: identifying DNA methylation signatures associated with interferon-related genes based on ethnicity and SLEDAI. J. Autoimmun. 96, 147–157 (2019).

    CAS  PubMed  Google Scholar 

  66. Zhao, M. et al. IFI44L promoter methylation as a blood biomarker for systemic lupus erythematosus. Ann. Rheum. Dis. 75, 1998–2006 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  67. Saxena, R., Mahajan, T. & Mohan, C. Lupus nephritis: current update. Arthritis Res. Ther. 13, 240 (2011).

    PubMed  PubMed Central  Google Scholar 

  68. Van Der Helm-Van Mil, A. H. M. et al. A prediction rule for disease outcome in patients with recent-onset undifferentiated arthritis: how to guide individual treatment decisions. Arthritis Rheum. 56, 433–440 (2007).

    PubMed  Google Scholar 

  69. Kocijan, R., Harre, U. & Schett, G. ACPA and bone loss in rheumatoid arthritis. Curr. Rheumatol. Rep. 15, 366 (2013).

    PubMed  Google Scholar 

  70. Daha, N. A. & Toes, R. E. M. Rheumatoid arthritis: are ACPA-positive and ACPA-negative RA the same disease? Nat. Rev. Rheumatol. 7, 202–203 (2011).

    PubMed  Google Scholar 

  71. Renauer, P. et al. DNA methylation patterns in naïve CD4+ T cells identify epigenetic susceptibility loci for malar rash and discoid rash in systemic lupus erythematosus. Lupus Sci. Med. 2, e000101 (2015).

    PubMed  PubMed Central  Google Scholar 

  72. Coit, P. et al. Renal involvement in lupus is characterized by unique DNA methylation changes in naïve CD4+ T cells. J. Autoimmun. 61, 29–35 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  73. Breitbach, M., Ramaker, R. C., Roberts, K., Kimberly, R. P. & Absher, D. Population-Specific Patterns of Epigenetic Defects in the B Cell Lineage in Patients With Systemic Lupus Erythematosus. Arthritis Rheumatol. 72, 282–291 (2019).

    PubMed  Google Scholar 

  74. Coit, P. et al. Ethnicity-specific epigenetic variation in naïve CD4+ T cells and the susceptibility to autoimmunity. Epigenetics Chromatin 8, 49 (2015).

    PubMed  PubMed Central  Google Scholar 

  75. Altorok, N., Tsou, P. S., Coit, P., Khanna, D. & Sawalha, A. H. Genome-wide DNA methylation analysis in dermal fibroblasts from patients with diffuse and limited systemic sclerosis reveals common and subset-specific DNA methylation aberrancies. Ann. Rheum. Dis. 74, 1612–1620 (2015).

    CAS  PubMed  Google Scholar 

  76. Nair, N. et al. Differential DNA methylation correlates with response to methotrexate in rheumatoid arthritis. Rheumatology 59, 1364–1371 (2019).

    Google Scholar 

  77. Gosselt, H. R. et al. Higher baseline global leukocyte DNA methylation is associated with MTX non-response in early RA patients. Arthritis Res. Ther. 21, 157 (2019).

    PubMed  PubMed Central  Google Scholar 

  78. Glossop, J. R. et al. DNA methylation at diagnosis is associated with response to disease-modifying drugs in early rheumatoid arthritis. Epigenomics 9, 419–428 (2017).

    CAS  PubMed  Google Scholar 

  79. Plant, D. et al. Differential methylation as a biomarker of response to etanercept in patients with rheumatoid arthritis. Arthritis Rheumatol. 68, 1353–1360 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  80. Chappell, L., Russell, A. J. C. & Voet, T. Single-cell (multi)omics technologies. Annu. Rev. Genomics Hum. Genet. 19, 15–41 (2018).

    CAS  PubMed  Google Scholar 

  81. Der, E. et al. Tubular cell and keratinocyte single-cell transcriptomics applied to lupus nephritis reveal type I IFN and fibrosis relevant pathways. Nat. Immunol. 20, 915–927 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  82. Efremova, M., Vento-Tormo, M., Teichmann, S. A. & Vento-Tormo, R. CellPhoneDB: inferring cell–cell communication from combined expression of multi-subunit ligand–receptor complexes. Nat. Protoc. 15, 1484–1506 (2020).

    CAS  PubMed  Google Scholar 

  83. Rahmani, E. et al. Cell-type-specific resolution epigenetics without the need for cell sorting or single-cell biology. Nat. Commun. 10, 3417 (2019).

    PubMed  PubMed Central  Google Scholar 

  84. Kang, H. M. et al. Multiplexed droplet single-cell RNA-sequencing using natural genetic variation. Nat. Biotechnol. 36, 89–94 (2018).

    CAS  PubMed  Google Scholar 

  85. Lähnemann, D. et al. Eleven grand challenges in single-cell data science. Genome Biol. 21, 31 (2020).

    PubMed  PubMed Central  Google Scholar 

  86. Bock, C. et al. Quantitative comparison of DNA methylation assays for biomarker development and clinical applications. Nat. Biotechnol. 34, 726–737 (2016).

    Google Scholar 

  87. Wang, Q. et al. Tagmentation-based whole-genome bisulfite sequencing. Nat. Protoc. 8, 2022–2032 (2013).

    CAS  PubMed  Google Scholar 

  88. Gu, H. et al. Preparation of reduced representation bisulfite sequencing libraries for genome-scale DNA methylation profiling. Nat. Protoc. 6, 468–481 (2011).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors thank O. Morante-Palacios and C. de la Calle-Fabregat for their help with the figures. The authors also thank CERCA Programme/Generalitat de Catalunya and the Josep Carreras Foundation for institutional support. E.B. is funded by the Ministry of Science, Innovation and Universities (MCIU) (grant numbers SAF2017-88086-R; AEI/FEDER, UE). Q.L. is funded by the National Natural Science Foundation of China (grant numbers 81830097 and 81861138016) and the Research and Development Plan of key areas in Hunan Province (grant number 2019WK2081). A.H.S is funded by the National Institutes of Health (grants numbers R01AI097134 and R01AR070148) and the Lupus Research Alliance.

Author information

Authors and Affiliations

Authors

Contributions

E.B. wrote the article. All authors researched data for the article, provided substantial contributions to discussions of content and reviewed and/or edited the article before submission.

Corresponding author

Correspondence to Esteban Ballestar.

Additional information

Competing interests

The authors declare no competing interests.

Peer review information

Nature Reviews Rheumatology thanks C. Hedrich, M. Alarcon-Riquelme and P. Ramos for their contribution to the peer review of this work.

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Glossary

DNA methylation

The covalent attachment of a methyl group to a DNA residue (most commonly to a cytosine nucleotide followed by a guanine nucleotide, known as CpG sites).

Methylation quantitative trait loci

Genetic variants that are associated with DNA methylation levels at particular CpG sites.

Synovial fibroblasts

Also known as fibroblast-like synoviocytes, synovial fibroblasts are the main stromal cells of the joint synovium. These cells produce the extracellular matrix components of the synovial fluid and are critical for cartilage integrity and lubrication of the joint.

Regulatory T cells

(Treg cells). A subpopulation of T cells that are immunosuppressive and generally suppress proliferation of effector T cells; these cells are essential for preventing autoimmune disease.

Genome-wide association studies

Observational studies of genome-wide sets of genetic variants in different individuals to identify variants associated with a trait; these studies typically focus on associations between single nucleotide polymorphisms and the occurrence of a disease.

Differentially methylated region

Genomic regions with a differential DNA methylation status across different biological samples. Differentially methylated regions usually involve adjacent sites or a group of sites close together.

Whole-genome bisulfite sequencing

A next-generation sequencing-based method for assessing the DNA methylation level of all cytosines in a genome, using sodium bisulfite treatment and DNA sequencing.

Reduced representation bisulfite sequencing

A method for analysing the DNA methylation profiles of genome regions that have a high CpG content using a combination of restriction enzyme digestion and bisulfite next-generation sequencing.

DNA methylation bead arrays

A high-throughput microarray-based method for measuring DNA methylation levels at single CpG site resolution.

Bisulfite pyrosequencing

A method designed to quantitatively determine the methylation status of individual cytosines in CpG sites from short PCR amplicons of DNA pre-treated with sodium bisulfite.

Epigenome-wide association study

An observational study examining a genome-wide set of epigenetic marks, including DNA methylation, and their association with a particular phenotype or trait (such as the occurrence of a disease).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ballestar, E., Sawalha, A.H. & Lu, Q. Clinical value of DNA methylation markers in autoimmune rheumatic diseases. Nat Rev Rheumatol 16, 514–524 (2020). https://doi.org/10.1038/s41584-020-0470-9

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41584-020-0470-9

This article is cited by

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research