Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Emerging pharmaceutical therapies for osteoarthritis

Abstract

The prevalence of osteoarthritis (OA) and the burden associated with the disease are steadily increasing worldwide, representing a major public health challenge for the coming decades. The lack of specific treatments for OA has led to it being recognized as a serious disease that has an unmet medical need. Advances in the understanding of OA pathophysiology have enabled the identification of a variety of potential therapeutic targets involved in the structural progression of OA, some of which are promising and under clinical investigation in randomized controlled trials. Emerging therapies include those targeting matrix-degrading proteases or senescent chondrocytes, promoting cartilage repair or limiting bone remodelling, local low-grade inflammation or Wnt signalling. In addition to these potentially disease-modifying OA drugs (DMOADs), several targets are being explored for the treatment of OA-related pain, such as nerve growth factor inhibitors. The results of these studies are expected to considerably reshape the landscape of OA management over the next few years. This Review describes the pathophysiological processes targeted by emerging therapies for OA, along with relevant clinical data and discussion of the main challenges for the further development of these therapies, to provide context for the latest advances in the field of pharmaceutical therapies for OA.

Key points

  • Osteoarthritis (OA) is a very common and severely debilitating disease with an unmet medical need, and new drugs are needed to alleviate OA symptoms and/or prevent structural progression.

  • Several drugs, such as sprifermin and MIV-711, have been shown to prevent cartilage loss or protect subchondral bone in OA, and thus represent potential disease-modifying OA drugs (DMOADs).

  • The clinical benefits of the positive structural outcomes observed with DMOADs, as well as their long-term safety, remain unclear.

  • Nerve growth factor inhibitors (such as tanezumab and fasinumab) improve pain and function in severe knee or hip OA, but are associated with an increased risk of rapidly progressive OA.

  • Biologic drugs (including IL-1β and TNF inhibitors) and bisphosphonates have yielded disappointing results in OA.

  • The clinical heterogeneity of OA is one of the major challenges for the development of DMOADs, as different phenotypes could require specific therapeutics.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Drugs targeting cartilage breakdown or promoting cartilage repair in OA.
Fig. 2: Drugs targeting subchondral bone remodelling in OA.
Fig. 3: Drugs targeting synovial inflammation in OA.
Fig. 4: Drugs targeting pain in OA.

Similar content being viewed by others

References

  1. Hunter, D. J. & Bierma-Zeinstra, S. Osteoarthritis. Lancet 393, 1745–1759 (2019).

    CAS  PubMed  Google Scholar 

  2. Wallace, I. J. et al. Knee osteoarthritis has doubled in prevalence since the mid-20th century. Proc. Natl Acad. Sci. USA 114, 9332–9336 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Hunter, D. J., Schofield, D. & Callander, E. The individual and socioeconomic impact of osteoarthritis. Nat. Rev. Rheumatol. 10, 437–441 (2014).

    PubMed  Google Scholar 

  4. Safiri, S. et al. Global, regional and national burden of osteoarthritis 1990–2017: a systematic analysis of the Global Burden of Disease Study 2017. Ann. Rheum. Dis. 79, 819–828 (2020).

    PubMed  Google Scholar 

  5. Bannuru, R. R. et al. OARSI guidelines for the non-surgical management of knee, hip, and polyarticular osteoarthritis. Osteoarthritis Cartilage 27, 1578–1589 (2019).

    CAS  PubMed  Google Scholar 

  6. Gregori, D. et al. Association of pharmacological treatments with long-term pain control in patients with knee osteoarthritis: a systematic review and meta-analysis. JAMA 320, 2564–2579 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  7. McAlindon, T. E. et al. Effect of intra-articular triamcinolone vs saline on knee cartilage volume and pain in patients with knee osteoarthritis: a randomized clinical trial. JAMA 317, 1967–1975 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Kolasinski, S. L. et al. 2019 American College of Rheumatology/Arthritis Foundation guideline for the management of osteoarthritis of the hand, hip, and knee. Arthritis Rheumatol. 72, 220–233 (2020).

    PubMed  Google Scholar 

  9. Leopoldino, A. O. et al. Paracetamol versus placebo for knee and hip osteoarthritis. Cochrane Database Syst. Rev. 2, CD013273 (2019).

    PubMed  Google Scholar 

  10. Roberts, E. et al. Paracetamol: not as safe as we thought? A systematic literature review of observational studies. Ann. Rheum. Dis. 75, 552–559 (2016).

    CAS  PubMed  Google Scholar 

  11. da Costa, B. R. et al. Oral or transdermal opioids for osteoarthritis of the knee or hip. Cochrane Database Syst. Rev. 9, CD003115 (2014).

    Google Scholar 

  12. Fuggle, N. et al. Safety of opioids in osteoarthritis: outcomes of a systematic review and meta-analysis. Drugs Aging 36, 129–143 (2019).

    PubMed  PubMed Central  Google Scholar 

  13. Krebs, E. E. et al. Effect of opioid vs nonopioid medications on pain-related function in patients with chronic back pain or hip or knee osteoarthritis pain: the SPACE randomized clinical trial. JAMA 319, 872–882 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Zeng, C. et al. Association of tramadol with all-cause mortality among patients with osteoarthritis. JAMA 321, 969–982 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Bannuru, R. R. et al. Comparative effectiveness of pharmacologic interventions for knee osteoarthritis: a systematic review and network meta-analysis. Ann. Intern. Med. 162, 46–54 (2015).

    PubMed  Google Scholar 

  16. da Costa, B. R. et al. Effectiveness of non-steroidal anti-inflammatory drugs for the treatment of pain in knee and hip osteoarthritis: a network meta-analysis. Lancet 390, e21–e33 (2017).

    PubMed  Google Scholar 

  17. Bally, M. et al. Risk of acute myocardial infarction with NSAIDs in real world use: bayesian meta-analysis of individual patient data. BMJ 357, j1909 (2017).

    PubMed  PubMed Central  Google Scholar 

  18. Nissen, S. E. et al. Cardiovascular safety of celecoxib, naproxen, or ibuprofen for arthritis. N. Engl. J. Med. 375, 2519–2529 (2016).

    CAS  PubMed  Google Scholar 

  19. Trelle, S. et al. Cardiovascular safety of non-steroidal anti-inflammatory drugs: network meta-analysis. BMJ 342, c7086 (2011).

    PubMed  PubMed Central  Google Scholar 

  20. Atiquzzaman, M., Karim, M. E., Kopec, J., Wong, H. & Anis, A. H. Role of nonsteroidal antiinflammatory drugs in the association between osteoarthritis and cardiovascular diseases: a longitudinal study. Arthritis Rheumatol. 71, 1835–1843 (2019).

    CAS  PubMed  Google Scholar 

  21. Jüni, P. et al. Intra-articular corticosteroid for knee osteoarthritis. Cochrane Database Syst. Rev. 10, CD005328 (2015).

    Google Scholar 

  22. Zeng, C. et al. Intra-articular corticosteroids and the risk of knee osteoarthritis progression: results from the Osteoarthritis Initiative. Osteoarthritis Cartilage 27, 855–862 (2019).

    CAS  PubMed  Google Scholar 

  23. Rutjes, A. W. et al. Viscosupplementation for osteoarthritis of the knee: a systematic review and meta-analysis. Ann. Intern. Med. 157, 180–191 (2012).

    PubMed  Google Scholar 

  24. Honvo, G. et al. Safety of intra-articular hyaluronic acid injections in osteoarthritis: outcomes of a systematic review and meta-analysis. Drugs Aging 36, 101–127 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  25. US Food and Drug Administration. Osteoarthritis: structural endpoints for the development of drugs (FDA, 2018).

  26. Loeser, R. F., Goldring, S. R., Scanzello, C. R. & Goldring, M. B. Osteoarthritis: a disease of the joint as an organ. Arthritis Rheum. 64, 1697–1707 (2012).

    PubMed  PubMed Central  Google Scholar 

  27. Stampella, A., Monteagudo, S. & Lories, R. Wnt signaling as target for the treatment of osteoarthritis. Best Pract. Res. Clin. Rheumatol. 31, 721–729 (2017).

    PubMed  Google Scholar 

  28. Conaghan, P. G., Cook, A. D., Hamilton, J. A. & Tak, P. P. Therapeutic options for targeting inflammatory osteoarthritis pain. Nat. Rev. Rheumatol. 15, 355–363 (2019).

    PubMed  Google Scholar 

  29. Styrkarsdottir, U. et al. Meta-analysis of Icelandic and UK data sets identifies missense variants in SMO, IL11, COL11A1 and 13 more new loci associated with osteoarthritis. Nat. Genet. 50, 1681–1687 (2018).

    CAS  PubMed  Google Scholar 

  30. Tachmazidou, I. et al. Identification of new therapeutic targets for osteoarthritis through genome-wide analyses of UK Biobank data. Nat. Genet. 51, 230–236 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Zengini, E. et al. Genome-wide analyses using UK Biobank data provide insights into the genetic architecture of osteoarthritis. Nat. Genet. 50, 549–558 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Hochberg, M. C. et al. Effect of intra-articular sprifermin vs placebo on femorotibial joint cartilage thickness in patients with osteoarthritis: the FORWARD randomized clinical trial. JAMA 322, 1360–1370 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Conaghan, P. G. et al. Disease-modifying effects of a novel cathepsin K inhibitor in osteoarthritis: a randomized, placebo-controlled study. Ann. Intern. Med. 172, 86–95 (2019).

    PubMed  Google Scholar 

  34. Bedson, J. & Croft, P. R. The discordance between clinical and radiographic knee osteoarthritis: a systematic search and summary of the literature. BMC Musculoskelet. Disord. 9, 116 (2008).

    PubMed  PubMed Central  Google Scholar 

  35. Eckstein, F. et al. Comparison of radiographic joint space width and magnetic resonance imaging for prediction of knee replacement: a longitudinal case-control study from the Osteoarthritis Initiative. Eur. Radiol. 26, 1942–1951 (2016).

    PubMed  Google Scholar 

  36. Troeberg, L. & Nagase, H. Proteases involved in cartilage matrix degradation in osteoarthritis. Biochim. Biophys. Acta 1824, 133–145 (2012).

    CAS  PubMed  Google Scholar 

  37. Glasson, S. S. et al. Deletion of active ADAMTS5 prevents cartilage degradation in a murine model of osteoarthritis. Nature 434, 644–648 (2005).

    CAS  PubMed  Google Scholar 

  38. Little, C. B. et al. Matrix metalloproteinase 13-deficient mice are resistant to osteoarthritic cartilage erosion but not chondrocyte hypertrophy or osteophyte development. Arthritis Rheum. 60, 3723–3733 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Stanton, H. et al. ADAMTS5 is the major aggrecanase in mouse cartilage in vivo and in vitro. Nature 434, 648–652 (2005).

    CAS  PubMed  Google Scholar 

  40. Neuhold, L. A. et al. Postnatal expression in hyaline cartilage of constitutively active human collagenase-3 (MMP-13) induces osteoarthritis in mice. J. Clin. Invest. 107, 35–44 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Krzeski, P. et al. Development of musculoskeletal toxicity without clear benefit after administration of PG-116800, a matrix metalloproteinase inhibitor, to patients with knee osteoarthritis: a randomized, 12-month, double-blind, placebo-controlled study. Arthritis Res. Ther. 9, R109 (2007).

    PubMed  PubMed Central  Google Scholar 

  42. Vandenbroucke, R. E. & Libert, C. Is there new hope for therapeutic matrix metalloproteinase inhibition? Nat. Rev. Drug Discov. 13, 904–927 (2014).

    CAS  PubMed  Google Scholar 

  43. Malfait, A. M. & Tortorella, M. D. The “elusive DMOAD”: aggrecanase inhibition from laboratory to clinic. Clin. Exp. Rheumatol. 37 (Suppl. 120), 130–134 (2019).

    PubMed  Google Scholar 

  44. Clement-Lacroix, P. et al. ADAMTS-5 inhibition with the potent and highly selective inhibitor GLPG1972 results in strong disease-modifying OA drug effects in the rat meniscectomy model [abstract]. Osteoarthritis Cartilage 26, S26 (2018).

    Google Scholar 

  45. Clement-Lacroix, P. et al. GLPG1972: a potent, selective, orally available adamts-5 inhibitor for the treatment of OA [abstract]. Osteoarthritis Cartilage 25, S58–S59 (2017).

    Google Scholar 

  46. van der Aar, E. M. et al. ADAMTS-5 inhibitor GLPG1972, a potential new treatment in osteoarthritis, shows favorable safety, pharmacokinetics and pharmacodynamics in healthy subjects [abstract]. Osteoarthritis Cartilage 26, S310 (2018).

    Google Scholar 

  47. Lalande, A. et al. Safety, tolerability, pharmacokinetics and pharmacodynamics in healthy male Japanese subjects of the ADAMTS-5 inhibitor S201086/GLPG1972, a potential new treatment in OA [abstract]. Arthritis Rheumatol. 71 (2019).

  48. Siebuhr, A. et al. The anti-ADAMTS-5 nanobody®, M6495, protects against cartilage breakdown in cartilage and synovial joint tissue explant models [abstract]. Osteoarthritis Cartilage 26, S187 (2018).

    Google Scholar 

  49. Werkmann, D. et al. In vitro characterization of the ADAMTS-5 specific nanobody® M6495 [abstract]. Osteoarthritis Cartilage 26, S178 (2018).

    Google Scholar 

  50. Guehring, H. et al. Safety, tolerability, pharmacokinetics and pharmacodynamics of single ascending doses of the anti-ADAMTS-5 Nanobody®, M6495, in healthy male subjects: a phase I, placebo-controlled, first-in-human study [abstract]. Arthritis Rheumatol. 71 (2019).

  51. Jeon, O. H., David, N., Campisi, J. & Elisseeff, J. H. Senescent cells and osteoarthritis: a painful connection. J. Clin. Invest. 128, 1229–1237 (2018).

    PubMed  PubMed Central  Google Scholar 

  52. Loeser, R. F., Collins, J. A. & Diekman, B. O. Ageing and the pathogenesis of osteoarthritis. Nat. Rev. Rheumatol. 12, 412–420 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Jeon, O. H. et al. Local clearance of senescent cells attenuates the development of post-traumatic osteoarthritis and creates a pro-regenerative environment. Nat. Med. 23, 775–781 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Hsu, B. et al. Safety, tolerability, pharmacokinetics, and clinical outcomes following single-dose IA administration of UBX0101, a senolytic MDM2/p53 interaction inhibitor, in patients with knee OA [abstract]. Arthritis Rheumatol. 71 (2019).

  55. Yousefzadeh, M. J. et al. Fisetin is a senotherapeutic that extends health and lifespan. EBioMedicine 36, 18–28 (2018).

    PubMed  PubMed Central  Google Scholar 

  56. Zheng, W. et al. Fisetin inhibits IL-1beta-induced inflammatory response in human osteoarthritis chondrocytes through activating SIRT1 and attenuates the progression of osteoarthritis in mice. Int. Immunopharmacol. 45, 135–147 (2017).

    CAS  PubMed  Google Scholar 

  57. Ellsworth, J. L. et al. Fibroblast growth factor-18 is a trophic factor for mature chondrocytes and their progenitors. Osteoarthritis Cartilage 10, 308–320 (2002).

    CAS  PubMed  Google Scholar 

  58. Moore, E. E. et al. Fibroblast growth factor-18 stimulates chondrogenesis and cartilage repair in a rat model of injury-induced osteoarthritis. Osteoarthritis Cartilage 13, 623–631 (2005).

    CAS  PubMed  Google Scholar 

  59. Mori, Y. et al. Identification of fibroblast growth factor-18 as a molecule to protect adult articular cartilage by gene expression profiling. J. Biol. Chem. 289, 10192–10200 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Gigout, A. et al. Sprifermin (rhFGF18) enables proliferation of chondrocytes producing a hyaline cartilage matrix. Osteoarthritis Cartilage 25, 1858–1867 (2017).

    CAS  PubMed  Google Scholar 

  61. Reker, D. et al. Sprifermin (rhFGF18) modulates extracellular matrix turnover in cartilage explants ex vivo. J. Transl. Med. 15, 250 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  62. Lohmander, L. S. et al. Intraarticular sprifermin (recombinant human fibroblast growth factor 18) in knee osteoarthritis: a randomized, double-blind, placebo-controlled trial. Arthritis Rheumatol. 66, 1820–1831 (2014).

    CAS  PubMed  Google Scholar 

  63. Eckstein, F., Wirth, W., Guermazi, A., Maschek, S. & Aydemir, A. Brief report: intraarticular sprifermin not only increases cartilage thickness, but also reduces cartilage loss: location-independent post hoc analysis using magnetic resonance imaging. Arthritis Rheumatol. 67, 2916–2922 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  64. Roemer, F. W. et al. Structural effects of sprifermin in knee osteoarthritis: a post-hoc analysis on cartilage and non-cartilaginous tissue alterations in a randomized controlled trial. BMC Musculoskelet. Disord. 17, 267 (2016).

    PubMed  PubMed Central  Google Scholar 

  65. Gühring, H. et al. OP0010 cartilage thickness modification with sprifermin in knee osteoarthritis patients translates into symptomatic improvement over placebo in patients at risk of further structural and symptomatic progression: post-hoc analysis of the phase II FORWARD trial. Ann. Rheum. Dis. 78, 70–71 (2019).

    Google Scholar 

  66. van der Kraan, P. M. The changing role of TGFbeta in healthy, ageing and osteoarthritic joints. Nat. Rev. Rheumatol. 13, 155–163 (2017).

    PubMed  Google Scholar 

  67. Noh, M. J. et al. Pre-clinical studies of retrovirally transduced human chondrocytes expressing transforming growth factor-beta-1 (TG-C). Cytotherapy 12, 384–393 (2010).

    CAS  PubMed  Google Scholar 

  68. Ha, C. W., Noh, M. J., Choi, K. B. & Lee, K. H. Initial phase I safety of retrovirally transduced human chondrocytes expressing transforming growth factor-beta-1 in degenerative arthritis patients. Cytotherapy 14, 247–256 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  69. Guermazi, A. et al. Structural effects of intra-articular TGF-β1 in moderate to advanced knee osteoarthritis: MRI-based assessment in a randomized controlled trial. BMC Musculoskelet. Disord. 18, 461 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  70. Lee, B. et al. Results of a phase II study to determine the efficacy and safety of genetically engineered allogeneic human chondrocytes expressing TGF-beta1. J. Knee Surg. 33, 167–172 (2019).

    PubMed  Google Scholar 

  71. Kim, M. K. et al. A multicenter, double-blind, phase III clinical trial to evaluate the efficacy and safety of a cell and gene therapy in knee osteoarthritis patients. Hum. Gene Ther. Clin. Dev. 29, 48–59 (2018).

    CAS  PubMed  Google Scholar 

  72. Harrell, C. R., Markovic, B. S., Fellabaum, C., Arsenijevic, A. & Volarevic, V. Mesenchymal stem cell-based therapy of osteoarthritis: current knowledge and future perspectives. Biomed. Pharmacother. 109, 2318–2326 (2019).

    CAS  PubMed  Google Scholar 

  73. Xing, D. et al. Intra-articular injection of mesenchymal stem cells in treating knee osteoarthritis: a systematic review of animal studies. Osteoarthritis Cartilage 26, 445–461 (2018).

    CAS  PubMed  Google Scholar 

  74. Emadedin, M. et al. Intra-articular implantation of autologous bone marrow-derived mesenchymal stromal cells to treat knee osteoarthritis: a randomized, triple-blind, placebo-controlled phase 1/2 clinical trial. Cytotherapy 20, 1238–1246 (2018).

    PubMed  Google Scholar 

  75. Freitag, J. et al. Adipose-derived mesenchymal stem cell therapy in the treatment of knee osteoarthritis: a randomized controlled trial. Regen. Med. 14, 213–230 (2019).

    CAS  PubMed  Google Scholar 

  76. Kim, S. H. et al. Intra-articular injection of mesenchymal stem cells for clinical outcomes and cartilage repair in osteoarthritis of the knee: a meta-analysis of randomized controlled trials. Arch. Orthop. Trauma. Surg. 139, 971–980 (2019).

    PubMed  Google Scholar 

  77. Lee, W. S., Kim, H. J., Kim, K. I., Kim, G. B. & Jin, W. Intra-articular injection of autologous adipose tissue-derived mesenchymal stem cells for the treatment of knee osteoarthritis: a phase iib, randomized, placebo-controlled clinical trial. Stem Cell Transl. Med. 8, 504–511 (2019).

    CAS  Google Scholar 

  78. Pers, Y. M. et al. Adipose mesenchymal stromal cell-based therapy for severe osteoarthritis of the knee: a phase I dose-escalation trial. Stem Cell Transl. Med. 5, 847–856 (2016).

    Google Scholar 

  79. De Bari, C. & Roelofs, A. J. Stem cell-based therapeutic strategies for cartilage defects and osteoarthritis. Curr. Opin. Pharmacol. 40, 74–80 (2018).

    PubMed  Google Scholar 

  80. Decker, R. S. et al. Cell origin, volume and arrangement are drivers of articular cartilage formation, morphogenesis and response to injury in mouse limbs. Dev. Biol. 426, 56–68 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  81. Roelofs, A. J. et al. Joint morphogenetic cells in the adult mammalian synovium. Nat. Commun. 8, 15040 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  82. ter Huurne, M. et al. Antiinflammatory and chondroprotective effects of intraarticular injection of adipose-derived stem cells in experimental osteoarthritis. Arthritis Rheum. 64, 3604–3613 (2012).

    PubMed  Google Scholar 

  83. Goldring, S. R. & Goldring, M. B. Changes in the osteochondral unit during osteoarthritis: structure, function and cartilage-bone crosstalk. Nat. Rev. Rheumatol. 12, 632–644 (2016).

    PubMed  Google Scholar 

  84. Zhen, G. et al. Inhibition of TGF-β signaling in mesenchymal stem cells of subchondral bone attenuates osteoarthritis. Nat. Med. 19, 704–712 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  85. Funck-Brentano, T. et al. Dkk-1-mediated inhibition of Wnt signaling in bone ameliorates osteoarthritis in mice. Arthritis Rheumatol. 66, 3028–3039 (2014).

    CAS  PubMed  Google Scholar 

  86. Fang, H. et al. Early changes of articular cartilage and subchondral bone in the DMM mouse model of osteoarthritis. Sci. Rep. 8, 2855 (2018).

    PubMed  PubMed Central  Google Scholar 

  87. Zhu, S. et al. Subchondral bone osteoclasts induce sensory innervation and osteoarthritis pain. J. Clin. Invest. 129, 1076–1093 (2019).

    PubMed  PubMed Central  Google Scholar 

  88. Aso, K. et al. Associations of symptomatic knee osteoarthritis with histopathologic features in subchondral bone. Arthritis Rheumatol. 71, 916–924 (2019).

    CAS  PubMed  Google Scholar 

  89. Nwosu, L. N. et al. Pain prediction by serum biomarkers of bone turnover in people with knee osteoarthritis: an observational study of TRAcP5b and cathepsin K in OA. Osteoarthritis Cartilage 25, 858–865 (2017).

    CAS  PubMed  Google Scholar 

  90. Dearmin, M. G., Trumble, T. N., Garcia, A., Chambers, J. N. & Budsberg, S. C. Chondroprotective effects of zoledronic acid on articular cartilage in dogs with experimentally induced osteoarthritis. Am. J. Vet. Res. 75, 329–337 (2014).

    CAS  PubMed  Google Scholar 

  91. Hayami, T. et al. The role of subchondral bone remodeling in osteoarthritis: reduction of cartilage degeneration and prevention of osteophyte formation by alendronate in the rat anterior cruciate ligament transection model. Arthritis Rheum. 50, 1193–1206 (2004).

    CAS  PubMed  Google Scholar 

  92. Khorasani, M. S. et al. Effect of alendronate on post-traumatic osteoarthritis induced by anterior cruciate ligament rupture in mice. Arthritis Res. Ther. 17, 30 (2015).

    PubMed  PubMed Central  Google Scholar 

  93. Lampropoulou-Adamidou, K. et al. Chondroprotective effect of high-dose zoledronic acid: an experimental study in a rabbit model of osteoarthritis. J. Orthop. Res. 32, 1646–1651 (2014).

    CAS  PubMed  Google Scholar 

  94. Mohan, G. et al. Pre-emptive, early, and delayed alendronate treatment in a rat model of knee osteoarthritis: effect on subchondral trabecular bone microarchitecture and cartilage degradation of the tibia, bone/cartilage turnover, and joint discomfort. Osteoarthritis Cartilage 21, 1595–1604 (2013).

    CAS  PubMed  Google Scholar 

  95. Siebelt, M. et al. Inhibited osteoclastic bone resorption through alendronate treatment in rats reduces severe osteoarthritis progression. Bone 66, 163–170 (2014).

    CAS  PubMed  Google Scholar 

  96. Funck-Brentano, T. et al. Targeting bone alleviates osteoarthritis in osteopenic mice and modulates cartilage catabolism. PLoS One 7, e33543 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  97. Kadri, A. et al. Inhibition of bone resorption blunts osteoarthritis in mice with high bone remodelling. Ann. Rheum. Dis. 69, 1533–1538 (2010).

    PubMed  Google Scholar 

  98. Zhu, S. et al. Alendronate protects against articular cartilage erosion by inhibiting subchondral bone loss in ovariectomized rats. Bone 53, 340–349 (2013).

    CAS  PubMed  Google Scholar 

  99. Roman-Blas, J. A. et al. Phenotype may obtain major benefit from bone-acting agents. Semin. Arthritis Rheum. 43, 421–428 (2014).

    CAS  PubMed  Google Scholar 

  100. Vaysbrot, E. E., Osani, M. C., Musetti, M. C., McAlindon, T. E. & Bannuru, R. R. Are bisphosphonates efficacious in knee osteoarthritis? A meta-analysis of randomized controlled trials. Osteoarthritis Cartilage 26, 154–164 (2018).

    CAS  PubMed  Google Scholar 

  101. Damman, W. et al. Bone marrow lesions and synovitis on MRI associate with radiographic progression after 2 years in hand osteoarthritis. Ann. Rheum. Dis. 76, 214–217 (2017).

    CAS  PubMed  Google Scholar 

  102. Felson, D. T. et al. Bone marrow edema and its relation to progression of knee osteoarthritis. Ann. Intern. Med. 139, 330–336 (2003).

    PubMed  Google Scholar 

  103. Haugen, I. K. et al. MRI findings predict radiographic progression and development of erosions in hand osteoarthritis. Ann. Rheum. Dis. 75, 117–123 (2016).

    PubMed  Google Scholar 

  104. Yusuf, E., Kortekaas, M. C., Watt, I., Huizinga, T. W. & Kloppenburg, M. Do knee abnormalities visualised on MRI explain knee pain in knee osteoarthritis? A systematic review. Ann. Rheum. Dis. 70, 60–67 (2011).

    PubMed  Google Scholar 

  105. Cai, G. et al. Effect of intravenous zoledronic acid on tibiofemoral cartilage volume among patients with knee osteoarthritis with bone marrow lesions: a randomized clinical trial. JAMA 323, 1456–1466 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  106. Deveza, L. A. et al. Efficacy of bisphosphonates in specific knee osteoarthritis subpopulations: protocol for an OA Trial Bank systematic review and individual patient data meta-analysis. BMJ Open 8, e023889 (2018).

    PubMed  PubMed Central  Google Scholar 

  107. Laslett, L. L., Kingsbury, S. R., Hensor, E. M., Bowes, M. A. & Conaghan, P. G. Effect of bisphosphonate use in patients with symptomatic and radiographic knee osteoarthritis: data from the Osteoarthritis Initiative. Ann. Rheum. Dis. 73, 824–830 (2014).

    CAS  PubMed  Google Scholar 

  108. Neogi, T., Li, S., Peloquin, C., Misra, D. & Zhang, Y. Effect of bisphosphonates on knee replacement surgery. Ann. Rheum. Dis. 77, 92–97 (2018).

    CAS  PubMed  Google Scholar 

  109. Haj-Mirzaian, A. et al. Bisphosphonates intake and its association with changes of periarticular bone area and three-dimensional shape: data from the Osteoarthritis Initiative (OAI). Osteoarthritis Cartilage 26, 564–568 (2018).

    CAS  PubMed  Google Scholar 

  110. Heidari, B. & Babaei, M. Therapeutic and preventive potential of vitamin D supplementation in knee osteoarthritis. ACR Open Rheumatol. 1, 318–326 (2019).

    PubMed  PubMed Central  Google Scholar 

  111. Arden, N. K. et al. The effect of vitamin D supplementation on knee osteoarthritis, the VIDEO study: a randomised controlled trial. Osteoarthritis Cartilage 24, 1858–1866 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  112. Jin, X. et al. Effect of Vitamin D supplementation on tibial cartilage volume and knee pain among patients with symptomatic knee osteoarthritis: a randomized clinical trial. JAMA 315, 1005–1013 (2016).

    CAS  PubMed  Google Scholar 

  113. McAlindon, T. et al. Effect of vitamin D supplementation on progression of knee pain and cartilage volume loss in patients with symptomatic osteoarthritis: a randomized controlled trial. JAMA 309, 155–162 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  114. Perry, T. A. et al. Effect of Vitamin D supplementation on synovial tissue volume and subchondral bone marrow lesion volume in symptomatic knee osteoarthritis. BMC Musculoskelet. Disord. 20, 76 (2019).

    PubMed  PubMed Central  Google Scholar 

  115. Zheng, S. et al. Maintaining vitamin D sufficiency is associated with improved structural and symptomatic outcomes in knee osteoarthritis. Am. J. Med. 130, 1211–1218 (2017).

    CAS  PubMed  Google Scholar 

  116. Sanghi, D. et al. Does vitamin D improve osteoarthritis of the knee: a randomized controlled pilot trial. Clin. Orthop. Relat. Res. 471, 3556–3562 (2013).

    PubMed  PubMed Central  Google Scholar 

  117. Jin, X. et al. Effect of vitamin D supplementation on pain and physical function in patients with knee osteoarthritis (OA): an OA Trial Bank protocol for a systematic review and individual patient data (IPD) meta-analysis. BMJ Open 10, e035302 (2020).

    PubMed  PubMed Central  Google Scholar 

  118. Bossard, M. J. et al. Proteolytic activity of human osteoclast cathepsin K. Expression, purification, activation, and substrate identification. J. Biol. Chem. 271, 12517–12524 (1996).

    CAS  PubMed  Google Scholar 

  119. Drake, F. H. et al. Cathepsin K, but not cathepsins B, L, or S, is abundantly expressed in human osteoclasts. J. Biol. Chem. 271, 12511–12516 (1996).

    CAS  PubMed  Google Scholar 

  120. Hou, W. S. et al. Comparison of cathepsins K and S expression within the rheumatoid and osteoarthritic synovium. Arthritis Rheum. 46, 663–674 (2002).

    CAS  PubMed  Google Scholar 

  121. Konttinen, Y. T. et al. Acidic cysteine endoproteinase cathepsin K in the degeneration of the superficial articular hyaline cartilage in osteoarthritis. Arthritis Rheum. 46, 953–960 (2002).

    CAS  PubMed  Google Scholar 

  122. Dejica, V. M. et al. Cleavage of type II collagen by cathepsin K in human osteoarthritic cartilage. Am. J. Pathol. 173, 161–169 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  123. Mort, J. S. et al. Early cathepsin K degradation of type II collagen in vitro and in vivo in articular cartilage. Osteoarthritis Cartilage 24, 1461–1469 (2016).

    CAS  PubMed  Google Scholar 

  124. Hayami, T., Zhuo, Y., Wesolowski, G. A., Pickarski, M. & Duong, L. T. Inhibition of cathepsin K reduces cartilage degeneration in the anterior cruciate ligament transection rabbit and murine models of osteoarthritis. Bone 50, 1250–1259 (2012).

    CAS  PubMed  Google Scholar 

  125. Kozawa, E. et al. Osteoarthritic change is delayed in a Ctsk-knockout mouse model of osteoarthritis. Arthritis Rheum. 64, 454–464 (2012).

    CAS  PubMed  Google Scholar 

  126. Soki, F. N. et al. Articular cartilage protection in Ctsk−/− mice is associated with cellular and molecular changes in subchondral bone and cartilage matrix. J. Cell Physiol. 233, 8666–8676 (2018).

    CAS  PubMed  Google Scholar 

  127. McClung, M. R. et al. Odanacatib for the treatment of postmenopausal osteoporosis: results of the LOFT multicentre, randomised, double-blind, placebo-controlled trial and LOFT Extension study. Lancet Diabetes Endocrinol. 7, 899–911 (2019).

    CAS  PubMed  Google Scholar 

  128. Lindstrom, E. et al. The selective cathepsin K inhibitor MIV-711 attenuates joint pathology in experimental animal models of osteoarthritis. J. Transl. Med. 16, 56 (2018).

    PubMed  PubMed Central  Google Scholar 

  129. Robinson, W. H. et al. Low-grade inflammation as a key mediator of the pathogenesis of osteoarthritis. Nat. Rev. Rheumatol. 12, 580–592 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  130. Hill, C. L. et al. Synovitis detected on magnetic resonance imaging and its relation to pain and cartilage loss in knee osteoarthritis. Ann. Rheum. Dis. 66, 1599–1603 (2007).

    PubMed  PubMed Central  Google Scholar 

  131. Stoppiello, L. A. et al. Structural associations of symptomatic knee osteoarthritis. Arthritis Rheumatol. 66, 3018–3027 (2014).

    PubMed  PubMed Central  Google Scholar 

  132. Sarmanova, A., Hall, M., Moses, J., Doherty, M. & Zhang, W. Synovial changes detected by ultrasound in people with knee osteoarthritis - a meta-analysis of observational studies. Osteoarthritis Cartilage 24, 1376–1383 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  133. Atukorala, I. et al. Synovitis in knee osteoarthritis: a precursor of disease? Ann. Rheum. Dis. 75, 390–395 (2016).

    CAS  PubMed  Google Scholar 

  134. Felson, D. T. et al. Synovitis and the risk of knee osteoarthritis: the MOST Study. Osteoarthritis Cartilage 24, 458–464 (2016).

    CAS  PubMed  Google Scholar 

  135. Roemer, F. W. et al. What comes first? Multitissue involvement leading to radiographic osteoarthritis: magnetic resonance imaging-based trajectory analysis over four years in the Osteoarthritis Initiative. Arthritis Rheumatol. 67, 2085–2096 (2015).

    PubMed  PubMed Central  Google Scholar 

  136. Wang, X. et al. Quantitative assessment of knee effusion-synovitis in older adults: association with knee structural abnormalities. Arthritis Rheumatol. 68, 837–844 (2016).

    PubMed  Google Scholar 

  137. Conaghan, P. G. et al. Clinical and ultrasonographic predictors of joint replacement for knee osteoarthritis: results from a large, 3-year, prospective EULAR study. Ann. Rheum. Dis. 69, 644–647 (2010).

    CAS  PubMed  Google Scholar 

  138. Wenham, C. Y. et al. A randomized, double-blind, placebo-controlled trial of low-dose oral prednisolone for treating painful hand osteoarthritis. Rheumatology 51, 2286–2294 (2012).

    CAS  PubMed  Google Scholar 

  139. Kroon, F. P. B. et al. Results of a 6-week treatment with 10 mg prednisolone in patients with hand osteoarthritis (HOPE): a double-blind, randomised, placebo-controlled trial. Lancet 394, 1993–2001 (2019).

    CAS  PubMed  Google Scholar 

  140. Oray, M., Abu Samra, K., Ebrahimiadib, N., Meese, H. & Foster, C. S. Long-term side effects of glucocorticoids. Expert Opin. Drug Saf. 15, 457–465 (2016).

    CAS  PubMed  Google Scholar 

  141. Conaghan, P. G. et al. Effects of a single intra-articular injection of a microsphere formulation of triamcinolone acetonide on knee osteoarthritis pain: a double-blinded, randomized, placebo-controlled, multinational study. J. Bone Jt. Surg. Am. 100, 666–677 (2018).

    Google Scholar 

  142. Conaghan, P. G. et al. Brief report: a phase IIb trial of a novel extended-release microsphere formulation of triamcinolone acetonide for intraarticular injection in knee osteoarthritis. Arthritis Rheumatol. 70, 204–211 (2018).

    CAS  PubMed  Google Scholar 

  143. Kraus, V. B. et al. Synovial and systemic pharmacokinetics (PK) of triamcinolone acetonide (TA) following intra-articular (IA) injection of an extended-release microsphere-based formulation (FX006) or standard crystalline suspension in patients with knee osteoarthritis (OA). Osteoarthritis Cartilage 26, 34–42 (2018).

    CAS  PubMed  Google Scholar 

  144. Russell, S. J. et al. Triamcinolone acetonide extended-release in patients with osteoarthritis and type 2 diabetes: a randomized, phase 2 study. Rheumatology 57, 2235–2241 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  145. Hartmann, K. et al. Molecular actions of glucocorticoids in cartilage and bone during health, disease, and steroid therapy. Physiol. Rev. 96, 409–447 (2016).

    CAS  PubMed  Google Scholar 

  146. Kompel, A. J. et al. Intra-articular corticosteroid injections in the hip and knee: perhaps not as safe as we thought? Radiology 293, 656–663 (2019).

    PubMed  Google Scholar 

  147. Leung, Y. Y., Huebner, J. L., Haaland, B., Wong, S. B. S. & Kraus, V. B. Synovial fluid pro-inflammatory profile differs according to the characteristics of knee pain. Osteoarthritis Cartilage 25, 1420–1427 (2017).

    CAS  PubMed  Google Scholar 

  148. Sohn, D. H. et al. Plasma proteins present in osteoarthritic synovial fluid can stimulate cytokine production via Toll-like receptor 4. Arthritis Res. Ther. 14, R7 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  149. Kapoor, M., Martel-Pelletier, J., Lajeunesse, D., Pelletier, J. P. & Fahmi, H. Role of proinflammatory cytokines in the pathophysiology of osteoarthritis. Nat. Rev. Rheumatol. 7, 33–42 (2011).

    CAS  PubMed  Google Scholar 

  150. Chevalier, X. et al. Intraarticular injection of anakinra in osteoarthritis of the knee: a multicenter, randomized, double-blind, placebo-controlled study. Arthritis Rheum. 61, 344–352 (2009).

    CAS  PubMed  Google Scholar 

  151. Cohen, S. B. et al. A randomized, double-blind study of AMG 108 (a fully human monoclonal antibody to IL-1R1) in patients with osteoarthritis of the knee. Arthritis Res. Ther. 13, R125 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  152. Kloppenburg, M. et al. Phase IIa, placebo-controlled, randomised study of lutikizumab, an anti-interleukin-1α and anti-interleukin-1β dual variable domain immunoglobulin, in patients with erosive hand osteoarthritis. Ann. Rheum. Dis. 78, 413–420 (2019).

    CAS  PubMed  Google Scholar 

  153. Fleischmann, R. M. et al. A phase II trial of lutikizumab, an anti-interleukin-1α/β dual variable domain immunoglobulin, in knee osteoarthritis patients with synovitis. Arthritis Rheumatol. 71, 1056–1069 (2019).

    CAS  PubMed  Google Scholar 

  154. van Dalen, S. C. et al. Interleukin-1 is not involved in synovial inflammation and cartilage destruction in collagenase-induced osteoarthritis. Osteoarthritis Cartilage 25, 385–396 (2017).

    PubMed  Google Scholar 

  155. Nasi, S., Ea, H. K., So, A. & Busso, N. Revisiting the role of interleukin-1 pathway in osteoarthritis: interleukin-1α and -1β, and NLRP3 inflammasome are not involved in the pathological features of the murine menisectomy model of osteoarthritis. Front. Pharmacol. 8, 282 (2017).

    PubMed  PubMed Central  Google Scholar 

  156. Ridker, P. M. et al. Antiinflammatory therapy with canakinumab for atherosclerotic disease. N. Engl. J. Med. 377, 1119–1131 (2017).

    CAS  PubMed  Google Scholar 

  157. Schieker, M. et al. Effects of interleukin-1β inhibition on incident hip and knee replacement: exploratory analyses from a randomized, double-blind, placebo-controlled trial. Ann. Intern. Med. 173, 509–515 (2020).

    PubMed  PubMed Central  Google Scholar 

  158. Wittoek, R. et al. Immunoscintigraphic detection of tumour necrosis factor by radiolabelled certolizumab pegol in patients with erosive hand osteoarthritis: a proof-of-concept study. Ann. Rheum. Dis. 77, 310–311 (2018).

    CAS  PubMed  Google Scholar 

  159. Loef, M. et al. TNF inhibitor treatment is associated with a lower risk of hand osteoarthritis progression in rheumatoid arthritis patients after 10 years. Rheumatology 57, 1917–1924 (2018).

    CAS  PubMed  Google Scholar 

  160. Aitken, D. et al. A randomised double-blind placebo-controlled crossover trial of HUMira (adalimumab) for erosive hand OsteoaRthritis — the HUMOR trial. Osteoarthritis Cartilage 26, 880–887 (2018).

    CAS  PubMed  Google Scholar 

  161. Chevalier, X. et al. Adalimumab in patients with hand osteoarthritis refractory to analgesics and NSAIDs: a randomised, multicentre, double-blind, placebo-controlled trial. Ann. Rheum. Dis. 74, 1697–1705 (2015).

    CAS  PubMed  Google Scholar 

  162. Verbruggen, G., Wittoek, R., Vander Cruyssen, B. & Elewaut, D. Tumour necrosis factor blockade for the treatment of erosive osteoarthritis of the interphalangeal finger joints: a double blind, randomised trial on structure modification. Ann. Rheum. Dis. 71, 891–898 (2012).

    CAS  PubMed  Google Scholar 

  163. Kloppenburg, M. et al. Etanercept in patients with inflammatory hand osteoarthritis (EHOA): a multicentre, randomised, double-blind, placebo-controlled trial. Ann. Rheum. Dis. 77, 1757–1764 (2018).

    CAS  PubMed  Google Scholar 

  164. Leung, Y. Y. et al. Colchicine lack of effectiveness in symptom and inflammation modification in knee osteoarthritis (COLKOA): a randomized controlled trial. Osteoarthritis Cartilage 26, 631–640 (2018).

    CAS  PubMed  Google Scholar 

  165. Larsson, S., Englund, M., Struglics, A. & Lohmander, L. S. Interleukin-6 and tumor necrosis factor alpha in synovial fluid are associated with progression of radiographic knee osteoarthritis in subjects with previous meniscectomy. Osteoarthritis Cartilage 23, 1906–1914 (2015).

    CAS  PubMed  Google Scholar 

  166. Goekoop, R. J. et al. Low innate production of interleukin-1β and interleukin-6 is associated with the absence of osteoarthritis in old age. Osteoarthritis Cartilage 18, 942–947 (2010).

    CAS  PubMed  Google Scholar 

  167. Livshits, G. et al. Interleukin-6 is a significant predictor of radiographic knee osteoarthritis: The Chingford Study. Arthritis Rheum. 60, 2037–2045 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  168. Stannus, O. et al. Circulating levels of IL-6 and TNF-α are associated with knee radiographic osteoarthritis and knee cartilage loss in older adults. Osteoarthritis Cartilage 18, 1441–1447 (2010).

    CAS  PubMed  Google Scholar 

  169. Latourte, A. et al. Systemic inhibition of IL-6/Stat3 signalling protects against experimental osteoarthritis. Ann. Rheum. Dis. 76, 748–755 (2017).

    CAS  PubMed  Google Scholar 

  170. Ryu, J. H. et al. Interleukin-6 plays an essential role in hypoxia-inducible factor 2alpha-induced experimental osteoarthritic cartilage destruction in mice. Arthritis Rheum. 63, 2732–2743 (2011).

    CAS  PubMed  Google Scholar 

  171. Cook, A. D. et al. Granulocyte-macrophage colony-stimulating factor is a key mediator in experimental osteoarthritis pain and disease development. Arthritis Res. Ther. 14, R199 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  172. Schett, G. et al. A phase IIa study of anti-GM-CSF antibody GSK3196165 in subjects with inflammatory hand osteoarthritis [abstract]. Arthritis Rheumatol. 70 (2018).

  173. Achuthan, A. et al. Granulocyte macrophage colony-stimulating factor induces CCL17 production via IRF4 to mediate inflammation. J. Clin. Invest. 126, 3453–3466 (2016).

    PubMed  PubMed Central  Google Scholar 

  174. Li, T. et al. TGF-beta type 2 receptor-mediated modulation of the IL-36 family can be therapeutically targeted in osteoarthritis. Sci. Transl. Med. 11, eaan2585 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  175. Evans, C. H., Ghivizzani, S. C. & Robbins, P. D. Gene delivery to joints by intra-articular injection. Hum. Gene Ther. 29, 2–14 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  176. Nusse, R. & Clevers, H. Wnt/β-catenin signaling, disease, and emerging therapeutic modalities. Cell 169, 985–999 (2017).

    CAS  PubMed  Google Scholar 

  177. Lories, R. J., Corr, M. & Lane, N. E. To Wnt or not to Wnt: the bone and joint health dilemma. Nat. Rev. Rheumatol. 9, 328–339 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  178. Lambert, C. et al. Gene expression pattern of cells from inflamed and normal areas of osteoarthritis synovial membrane. Arthritis Rheumatol. 66, 960–968 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  179. Nakamura, Y., Nawata, M. & Wakitani, S. Expression profiles and functional analyses of Wnt-related genes in human joint disorders. Am. J. Pathol. 167, 97–105 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  180. Lories, R. J. et al. Articular cartilage and biomechanical properties of the long bones in Frzb-knockout mice. Arthritis Rheum. 56, 4095–4103 (2007).

    CAS  PubMed  Google Scholar 

  181. Monteagudo, S. et al. DOT1L safeguards cartilage homeostasis and protects against osteoarthritis. Nat. Commun. 8, 15889 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  182. Thysen, S., Luyten, F. P. & Lories, R. J. Loss of Frzb and Sfrp1 differentially affects joint homeostasis in instability-induced osteoarthritis. Osteoarthritis Cartilage 23, 275–279 (2015).

    CAS  PubMed  Google Scholar 

  183. Zhu, M. et al. Inhibition of beta-catenin signaling in articular chondrocytes results in articular cartilage destruction. Arthritis Rheum. 58, 2053–2064 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  184. Zhu, M. et al. Activation of beta-catenin signaling in articular chondrocytes leads to osteoarthritis-like phenotype in adult beta-catenin conditional activation mice. J. Bone Miner. Res. 24, 12–21 (2009).

    CAS  PubMed  Google Scholar 

  185. van den Bosch, M. H. et al. Induction of canonical Wnt Signaling by synovial overexpression of selected wnts leads to protease activity and early osteoarthritis-like cartilage damage. Am. J. Pathol. 185, 1970–1980 (2015).

    PubMed  Google Scholar 

  186. Nalesso, G. et al. WNT16 antagonises excessive canonical WNT activation and protects cartilage in osteoarthritis. Ann. Rheum. Dis. 76, 218–226 (2017).

    CAS  PubMed  Google Scholar 

  187. Lietman, C. et al. Inhibition of Wnt/β-catenin signaling ameliorates osteoarthritis in a murine model of experimental osteoarthritis. JCI Insight 3, e96308 (2018).

    PubMed Central  Google Scholar 

  188. Deshmukh, V. et al. A small-molecule inhibitor of the Wnt pathway (SM04690) as a potential disease modifying agent for the treatment of osteoarthritis of the knee. Osteoarthritis Cartilage 26, 18–27 (2018).

    CAS  PubMed  Google Scholar 

  189. Deshmukh, V. et al. Modulation of the Wnt pathway through inhibition of CLK2 and DYRK1A by lorecivivint as a novel, potentially disease-modifying approach for knee osteoarthritis treatment. Osteoarthritis Cartilage 27, 1347–1360 (2019).

    CAS  PubMed  Google Scholar 

  190. Yazici, Y. et al. A novel Wnt pathway inhibitor, SM04690, for the treatment of moderate to severe osteoarthritis of the knee: results of a 24-week, randomized, controlled, phase 1 study. Osteoarthritis Cartilage 25, 1598–1606 (2017).

    CAS  PubMed  Google Scholar 

  191. Yazici, Y. et al. Results from a 52 week randomized, double-blind, placebo-controlled, phase 2 study of a novel, intra-articular, Wnt pathway inhibitor (SM04690) for the treatment of knee osteoarthritis [abstract]. Arthritis Rheumatol. 69 (2017).

  192. Yazici, Y. et al. Efficacy and safety from a phase 2b trial of SM04690, a novel, intra-articular, Wnt pathway inhibitor for the treatment of osteoarthritis of the knee [abstract]. Arthritis Rheumatol. 70 (2018).

  193. Gossec, L. et al. The role of pain and functional impairment in the decision to recommend total joint replacement in hip and knee osteoarthritis: an international cross-sectional study of 1909 patients. Report of the OARSI-OMERACT Task Force on total joint replacement. Osteoarthritis Cartilage 19, 147–154 (2011).

    CAS  PubMed  Google Scholar 

  194. Malfait, A. M. & Schnitzer, T. J. Towards a mechanism-based approach to pain management in osteoarthritis. Nat. Rev. Rheumatol. 9, 654–664 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  195. Obeidat, A. M., Miller, R. E., Miller, R. J. & Malfait, A. M. The nociceptive innervation of the normal and osteoarthritic mouse knee. Osteoarthritis Cartilage 27, 1669–1679 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  196. Neogi, T. et al. Association of joint inflammation with pain sensitization in knee osteoarthritis: the multicenter osteoarthritis study. Arthritis Rheumatol. 68, 654–661 (2016).

    PubMed  PubMed Central  Google Scholar 

  197. Brenn, D., Richter, F. & Schaible, H. G. Sensitization of unmyelinated sensory fibers of the joint nerve to mechanical stimuli by interleukin-6 in the rat: an inflammatory mechanism of joint pain. Arthritis Rheum. 56, 351–359 (2007).

    CAS  PubMed  Google Scholar 

  198. Richter, F. et al. Tumor necrosis factor causes persistent sensitization of joint nociceptors to mechanical stimuli in rats. Arthritis Rheum. 62, 3806–3814 (2010).

    CAS  PubMed  Google Scholar 

  199. Neogi, T. et al. Sensitivity and sensitisation in relation to pain severity in knee osteoarthritis: trait or state? Ann. Rheum. Dis. 74, 682–688 (2015).

    PubMed  Google Scholar 

  200. Steen Pettersen, P. et al. Peripheral and central sensitization of pain in individuals with hand osteoarthritis and associations with self-reported pain severity. Arthritis Rheumatol. 71, 1070–1077 (2019).

    PubMed  Google Scholar 

  201. Stefanik, J. J. et al. Changes in pain sensitization after bariatric surgery. Arthritis Care Res. 70, 1525–1528 (2018).

    Google Scholar 

  202. Miller, R. E. et al. Chemogenetic inhibition of pain neurons in a mouse model of osteoarthritis. Arthritis Rheumatol. 69, 1429–1439 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  203. Chen, L. et al. Efficacy and tolerability of duloxetine in patients with knee osteoarthritis: a meta-analysis of randomised controlled trials. Intern. Med. J. 49, 1514–1523 (2019).

    CAS  PubMed  Google Scholar 

  204. Osani, M. C. & Bannuru, R. R. Efficacy and safety of duloxetine in osteoarthritis: a systematic review and meta-analysis. Korean J. Intern. Med. 34, 966–973 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  205. Weng, C., Xu, J., Wang, Q., Lu, W. & Liu, Z. Efficacy and safety of duloxetine in osteoarthritis or chronic low back pain: a systematic review and meta-analysis. Osteoarthritis Cartilage 28, 721–734 (2020).

    CAS  PubMed  Google Scholar 

  206. Woolf, C. J., Safieh-Garabedian, B., Ma, Q. P., Crilly, P. & Winter, J. Nerve growth factor contributes to the generation of inflammatory sensory hypersensitivity. Neuroscience 62, 327–331 (1994).

    CAS  PubMed  Google Scholar 

  207. Mantyh, P. W., Koltzenburg, M., Mendell, L. M., Tive, L. & Shelton, D. L. Antagonism of nerve growth factor-TrkA signaling and the relief of pain. Anesthesiology 115, 189–204 (2011).

    PubMed  Google Scholar 

  208. Tominaga, M. et al. The cloned capsaicin receptor integrates multiple pain-producing stimuli. Neuron 21, 531–543 (1998).

    CAS  PubMed  Google Scholar 

  209. Seidel, M. F., Herguijuela, M., Forkert, R. & Otten, U. Nerve growth factor in rheumatic diseases. Semin. Arthritis Rheum. 40, 109–126 (2010).

    CAS  PubMed  Google Scholar 

  210. Miller, R. E., Block, J. A. & Malfait, A. M. Nerve growth factor blockade for the management of osteoarthritis pain: what can we learn from clinical trials and preclinical models? Curr. Opin. Rheumatol. 29, 110–118 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  211. von Loga, I. S. et al. Active immunisation targeting nerve growth factor attenuates chronic pain behaviour in murine osteoarthritis. Ann. Rheum. Dis. 78, 672–675 (2019).

    Google Scholar 

  212. Lane, N. E. et al. Tanezumab for the treatment of pain from osteoarthritis of the knee. N. Engl. J. Med. 363, 1521–1531 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  213. Tive, L. et al. Pooled analysis of tanezumab efficacy and safety with subgroup analyses of phase III clinical trials in patients with osteoarthritis pain of the knee or hip. J. Pain Res. 12, 975–995 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  214. Roemer, F. W. & Guermazi, A. Imaging atlas for eligibility and on-study safety of potential joint adverse events in anti-NGF studies. Osteoarthritis Cartilage 23, S1–S2 (2015).

    PubMed  Google Scholar 

  215. Hochberg, M. C. et al. When is osteonecrosis not osteonecrosis?: adjudication of reported serious adverse joint events in the tanezumab clinical development program. Arthritis Rheumatol. 68, 382–391 (2016).

    CAS  PubMed  Google Scholar 

  216. Belanger, P. et al. From the cover: evaluation of the effects of tanezumab, a monoclonal antibody against nerve growth factor, on the sympathetic nervous system in adult cynomolgus monkeys (Macaca fascicularis): a stereologic, histomorphologic, and cardiofunctional assessment. Toxicol. Sci. 158, 319–333 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  217. Schnitzer, T. J. et al. Effect of tanezumab on joint pain, physical function, and patient global assessment of osteoarthritis among patients with osteoarthritis of the hip or knee: a randomized clinical trial. JAMA 322, 37–48 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  218. Berenbaum, F. et al. Subcutaneous tanezumab for osteoarthritis of the hip or knee: efficacy and safety results from a 24-week randomised phase III study with a 24-week follow-up period. Ann. Rheum. Dis. 79, 800–810 (2020).

    CAS  PubMed  Google Scholar 

  219. Hochberg, M. C. et al. Subcutaneous tanezumab versus NSAID for the treatment of osteoarthritis: joint safety events in a randomized, double-blind, active-controlled, 80-week, phase-3 study [abstract]. Arthritis Rheumatol. 71 (2019).

  220. Dakin, P. et al. The efficacy, tolerability, and joint safety of fasinumab in osteoarthritis pain: a phase IIb/III double-blind, placebo-controlled, randomized clinical trial. Arthritis Rheumatol. 71, 1824–1834 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  221. Huskisson, E. C., Berry, H., Gishen, P., Jubb, R. W. & Whitehead, J. Effects of antiinflammatory drugs on the progression of osteoarthritis of the knee. LINK Study Group. Longitudinal investigation of nonsteroidal antiinflammatory drugs in knee osteoarthritis. J. Rheumatol. 22, 1941–1946 (1995).

    CAS  PubMed  Google Scholar 

  222. Rashad, S. et al. Effect of non-steroidal anti-inflammatory drugs on the course of osteoarthritis. Lancet 2, 519–522 (1989).

    CAS  PubMed  Google Scholar 

  223. Reijman, M. et al. Is there an association between the use of different types of nonsteroidal antiinflammatory drugs and radiologic progression of osteoarthritis? The Rotterdam Study. Arthritis Rheum. 52, 3137–3142 (2005).

    CAS  PubMed  Google Scholar 

  224. Ding, C., Cicuttini, F. & Jones, G. Do NSAIDs affect longitudinal changes in knee cartilage volume and knee cartilage defects in older adults? Am. J. Med. 122, 836–842 (2009).

    CAS  PubMed  Google Scholar 

  225. Nakata, K. et al. Disease-modifying effects of COX-2 selective inhibitors and non-selective NSAIDs in osteoarthritis: a systematic review. Osteoarthritis Cartilage 26, 1263–1273 (2018).

    CAS  PubMed  Google Scholar 

  226. LaBranche, T. P. et al. Nerve growth factor inhibition with tanezumab influences weight-bearing and subsequent cartilage damage in the rat medial meniscal tear model. Ann. Rheum. Dis. 76, 295–302 (2017).

    CAS  PubMed  Google Scholar 

  227. Li, Z. et al. Fracture repair requires TrkA signaling by skeletal sensory nerves. J. Clin. Invest. 129, 5137–5150 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  228. Tomlinson, R. E. et al. NGF-TrkA signaling in sensory nerves is required for skeletal adaptation to mechanical loads in mice. Proc. Natl Acad. Sci. USA 114, E3632–E3641 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  229. Watt, F. E. et al. Tropomyosin-related kinase A (TrkA) inhibition for the treatment of painful knee osteoarthritis: results from a randomized controlled phase 2a trial. Osteoarthritis Cartilage 27, 1590–1598 (2019).

    CAS  PubMed  Google Scholar 

  230. Krupka, E., Jiang, G. L. & Jan, C. Efficacy and safety of intra-articular injection of tropomyosin receptor kinase A inhibitor in painful knee osteoarthritis: a randomized, double-blind and placebo-controlled study. Osteoarthritis Cartilage 27, 1599–1607 (2019).

    CAS  PubMed  Google Scholar 

  231. Simone, D. A., Nolano, M., Johnson, T., Wendelschafer-Crabb, G. & Kennedy, W. R. Intradermal injection of capsaicin in humans produces degeneration and subsequent reinnervation of epidermal nerve fibers: correlation with sensory function. J. Neurosci. 18, 8947–8959 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  232. Stevens, R. M. et al. Randomized, double-blind, placebo-controlled trial of intraarticular trans-capsaicin for pain associated with osteoarthritis of the knee. Arthritis Rheumatol. 71, 1524–1533 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  233. Arsenault, P. et al. NEO6860, modality-selective TRPV1 antagonist: a randomized, controlled, proof-of-concept trial in patients with osteoarthritis knee pain. Pain Rep. 3, e696 (2018).

    PubMed  PubMed Central  Google Scholar 

  234. Carlesso, L. C. & Neogi, T. Identifying pain susceptibility phenotypes in knee osteoarthritis. Clin. Exp. Rheumatol. 37, 96–99 (2019).

    PubMed  PubMed Central  Google Scholar 

  235. Deveza, L. A., Nelson, A. E. & Loeser, R. F. Phenotypes of osteoarthritis: current state and future implications. Clin. Exp. Rheumatol. 37, 64–72 (2019).

    PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

A.L. wrote the article. All authors researched data for the article, made a substantial contribution to discussion of content and reviewed or edited the manuscript before submission.

Corresponding author

Correspondence to Augustin Latourte.

Ethics declarations

Competing interests

A.L. has received consultancy fees from Pfizer. M.K. has acted as a consultant for Abbvie, Flexion, GlaxoSmithKline, Kiniksa, Levicept, Merck Serono and Pfizer, with fees paid to her institution; she has received royalties from Wolters Kluwer for contributing to Up-to-Date and from Springer Verlag for contributing to “Reumatologie en klinische immunologie”; and she has received grant funding from the Dutch Arthritis Association, European League Against Rheumatism and IMI/APPROACH. P.R. has received consultancy fees from BioIberica, Expanscience, Genévrier, Labrha, Pierre Fabre and Pfizer.

Additional information

Peer review information

Nature Reviews Rheumatology thanks C. Ding and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Latourte, A., Kloppenburg, M. & Richette, P. Emerging pharmaceutical therapies for osteoarthritis. Nat Rev Rheumatol 16, 673–688 (2020). https://doi.org/10.1038/s41584-020-00518-6

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41584-020-00518-6

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing