Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Endemic parkinsonism: clusters, biology and clinical features

Abstract

The term ‘endemic parkinsonism’ refers to diseases that manifest with a dominant parkinsonian syndrome, which can be typical or atypical, and are present only in a particular geographically defined location or population. Ten phenotypes of endemic parkinsonism are currently known: three in the Western Pacific region; two in the Asian-Oceanic region; one in the Caribbean islands of Guadeloupe and Martinique; and four in Europe. Some of these disease entities seem to be disappearing over time and therefore are probably triggered by unique environmental factors. By contrast, other types persist because they are exclusively genetically determined. Given the geographical clustering and potential overlap in biological and clinical features of these exceptionally interesting diseases, this Review provides a historical reference text and offers current perspectives on each of the 10 phenotypes of endemic parkinsonism. Knowledge obtained from the study of these disease entities supports the hypothesis that both genetic and environmental factors contribute to the development of neurodegenerative diseases, not only in endemic parkinsonism but also in general. At the same time, this understanding suggests useful directions for further research in this area.

Key points

  • Existing definitions and classification schemes for endemic parkinsonism all have limitations.

  • Foci of endemic parkinsonism are clustered by geographic region as well as clinical features.

  • Endemic parkinsonism has a highly heterogeneous pathological background.

  • Some clusters of endemic parkinsonism are associated with exposure to neurotoxic environmental factors.

  • Other clusters of endemic parkinsonism have a primarily genetic cause.

  • Further study of endemic parkinsonism could illuminate future research into neurodegenerative diseases.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Timeline of discoveries and important events related to endemic parkinsonism.
Fig. 2: Neuropathological features of Western Pacific and Oceanian clusters of endemic parkinsonism.
Fig. 3: Putative mechanisms of action of neurotoxic environmental compounds.
Fig. 4: Neuropathological features of Guadeloupe parkinsonism.
Fig. 5: Neuropathological features of atypical parkinsonism in Southeastern Moravia.

Similar content being viewed by others

References

  1. Nuytemans, K. et al. Founder mutation p.R1441C in the leucine-rich repeat kinase 2 gene in Belgian Parkinson’s disease patients. Eur. J. Hum. Genet. 16, 471–479 (2008).

    CAS  PubMed  Google Scholar 

  2. Plato, C. H. C. et al. Amyotrophic lateral sclerosis and parkinsonism–dementia complex of Guam: changing incidence rates during the past 60 years. Am. J. Epidemiol. 157, 149–157 (2003).

    PubMed  Google Scholar 

  3. Spencer, P. S., Nunn, P. B., Hugon, J., Ludolph, A. & Roy, D. N. Motorneurone disease on Guam: possible role of a food neurotoxin. Lancet 1, 965 (1985).

    Google Scholar 

  4. Spencer, P. et al. Guam amyotrophic lateral sclerosis–parkinsonism–dementia linked to a plant excitant neurotoxin. Science 237, 517–522 (1987).

    ADS  CAS  PubMed  Google Scholar 

  5. Spencer, P. S. et al. Discovery and partial characterization of primate motor-system toxins. Ciba Found. Symp. 126, 221–238 (1987).

    CAS  PubMed  Google Scholar 

  6. Cox, P. A., Davis, D. A., Mash, D. C. & Metcalf, J. S. Do vervets and macaques respond differently to BMAA? Neurotoxicology 57, 310–311 (2016).

    CAS  PubMed  Google Scholar 

  7. Spencer, P. S., Garner, C. E., Palmer, V. S. & Kisby, G. E. Vervets and macaques: similarities and differences in their responses to l-BMAA. Neurotoxicology 56, 284–286 (2016).

    CAS  PubMed  Google Scholar 

  8. Cox, P. A. & Sacks, O. W. Cycad neurotoxins, consumption of flying foxes and ALS-PDC disease in Guam. Neurology 58, 976–979 (2002).

    Google Scholar 

  9. Marler, T. E., Lee, V. & Shaw, C. Cycad toxins and neurological disorders on Guam: defining theoretical and experimental standards for correlating human disease with environmental toxins. Hortscience 40, 1598–1606 (2005).

    CAS  Google Scholar 

  10. Spencer, P. S., Ohta, M. & Palmer, V. S. Cycad use and motor neurone disease in Kii peninsula of Japan. Lancet 2, 1462–1463 (1987).

    CAS  PubMed  Google Scholar 

  11. Spencer, P. S., Palmer, V. S., Herman, A. & Asmedi, A. Cycad use and motor neurone disease in Irian Jaya. Lancet 2, 1273–1274 (1987).

    CAS  PubMed  Google Scholar 

  12. Caparros-Lefebvre, D., Steele, J., Kotake, Y. & Ohta, S. Geographic isolates of atypical parkinsonism and tauopathy in the tropics: possible synergy of neurotoxins. Mov. Disord. 21, 1769–1770 (2006).

    PubMed  Google Scholar 

  13. Lannuzel, A., Ruberg, M. & Michel, P. P. Atypical parkinsonism in the Caribbean island of Guadeloupe: etiological role of the mitochondrial complex I inhibitor annonacin. Mov. Disord. 23, 2122–2128 (2008).

    PubMed  Google Scholar 

  14. Zimmerman, H. M. Progress report of work in the laboratory of pathology during May, 1945. Guam, US Naval Medical Research Unit number 2, June 1 (Unpublished Navy Memorandum, Sealed ‘Secret’) (Department of the Navy, 1945).

  15. Mulder, D. W., Kurland, L. T. & Iriarte, L. L. G. Neurologic diseases on the island of Guam. US Armed Forces Med. J. 5, 39 (1954).

    Google Scholar 

  16. Kurland, L. T. & Mulder, D. W. Epidemiologic investigations of amyotrophic lateral sclerosis. 1. Preliminary report of geographical distribution with special reference to the Mariana Islands including clinical and pathological observations. Neurology 4, 438–448 (1954).

    CAS  PubMed  Google Scholar 

  17. Kurland, L. T. & Mulder, D. W. Epidemiologic investigations of amyotrophic lateral sclerosis. 2. Familial aggregations indicative of dominant inheritance. Neurology 5, 182–196 (1955).

    CAS  PubMed  Google Scholar 

  18. Hirano, A. My academic life in neuropathology. J. Neuropathol. Exp. Neurol. 69, 760–766 (2010).

    PubMed  Google Scholar 

  19. Hirano, A. Hirano bodies and related neuronal inclusions. Neuropathol. Appl. Neurobiol. 20, 3–11 (1994).

    CAS  PubMed  Google Scholar 

  20. Steele, J. C. Parkinsonism–dementia complex of Guam. Mov. Disord. 20, S99–S107 (2005).

    PubMed  Google Scholar 

  21. Steele, J. C. et al. Defining neurodegeneration on Guam by targeted genomic sequencing. Ann. Neurol. 77, 458–468 (2015).

    CAS  PubMed  Google Scholar 

  22. Spencer, P. S. Etiology of retinal and cerebellar pathology in Western Pacific amyotrophic lateral sclerosis and parkinsonism–dementia complex. Eye Brain 12, 97–104 (2020).

    PubMed  PubMed Central  Google Scholar 

  23. Spencer, P. S. et al. Kampo medicine and muro disease (amyotrophic lateral sclerosis and parkinsonism–dementia complex): postscript and historical footnote. eNeurologicalsci 22, 100308 (2021).

    PubMed  Google Scholar 

  24. Hirano, A., Malamud, N. & Kurland, L. T. Parkinsonism–dementia complex, an endemic disease on the island of Guam: II. Pathological features. Brain 84, 662–679 (1961).

    CAS  PubMed  Google Scholar 

  25. Hirano, A., Malamud, N., Elizan, T. S. & Kurland, L. T. Amyotrophic lateral sclerosis and parkinsonism–dementia complex on Guam. Further pathologic studies. Arch. Neurol. 15, 35–51 (1966).

    CAS  PubMed  Google Scholar 

  26. Oyanagi, K. & Wada, M. Neuropathology of parkinsonism–dementia complex and amyotrophic lateral sclerosis of Guam: an update. J. Neurol. 246, 19–27 (1999).

    Google Scholar 

  27. Oyanagi, K. et al. Amyotrophic lateral sclerosis of Guam: the nature of the neuropathological findings. Acta Neuropathol. 88, 405–412 (1994).

    CAS  PubMed  Google Scholar 

  28. Yamazaki, M. et al. Alpha-synuclein inclusions in amygdala in the brains of patients with the parkinsonism–dementia complex of Guam. J. Neuropathol. Exp. Neurol. 59, 585–591 (2000).

    CAS  PubMed  Google Scholar 

  29. Forman, M. S. et al. Tau and α-synuclein pathology in amygdala of parkinsonism–dementia complex patients of Guam. Am. J. Pathol. 160, 1725–1731 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Miklossy, J. et al. Enduring involvement of tau, β-amyloid, α-synuclein, ubiquitin and TDP-43 pathology in the amyotrophic lateral sclerosis/parkinsonism–dementia complex of Guam (ALS/PDC). Acta Neuropathol. 116, 625–637 (2008).

    CAS  PubMed  Google Scholar 

  31. Verheijen, B. M., Oyanagi, K. & Leeuwen, F. W. Dysfunction of protein quality control in parkinsonism–dementia complex of Guam. Front. Neurol. 9, 173 (2018).

    PubMed  PubMed Central  Google Scholar 

  32. Spencer, P., Palmer, V. S. & Kisby, G. K. Western Pacific ALS-PDC: evidence implicating cycad neurotoxins. J. Neurol. Sci. 419, 117185 (2020).

    CAS  PubMed  Google Scholar 

  33. Laqueur, G. L., Mickelsen, O., Whitting, M. G. & Kurland, L. T. Carcinogenic properties of nuts from Cycas circinalis L. indigenous to Guam. J. Natl Cancer Inst. 31, 919–951 (1963).

    CAS  PubMed  Google Scholar 

  34. Kurland, L. T. An appraisal to the neurotoxicity of cycad and the etiology of amyotrophic lateral sclerosis on Guam. Fed. Proc. 31, 1540–1542 (1972).

    CAS  PubMed  Google Scholar 

  35. Gajdusek, D. C. & Salazar, A. M. Amyotrophic lateral sclerosis and parkinsonian syndromes in high incidence among the Auyu and Jakai people of West new Guinea. Neurology 32, 107–126 (1982).

    CAS  PubMed  Google Scholar 

  36. Gajdusek, D. C. Motor neuron disease in natives of New Guinea. N. Engl. J. Med. 268, 473–476 (1963).

    Google Scholar 

  37. Spencer, P. S., Palmer, V., Ohta, M. & Herman, A. in Amyotrophic Lateral Sclerosis: Recent Advances in Research and Treatment (eds Tsubaki, T. & Yase, Y.) 35–40 (Excerpta Medica, 1988).

  38. Cox, P. A., Banack, S. A. & Murch, S. J. Biomagification of cyanobacterial neurotoxins and neurodegenerative disease among the Chamoro people of Guam. Proc. Natl Acad. Sci. USA 100, 13380–13383 (2003).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  39. Ince, P. G. & Codd, G. A. Return of the cycad hypothesis — does the amyotrophic lateral sclerosis/parkinsonism dementia complex (ALS/PDC) of Guam have new implications for global health? Neuropathol. Appl. Neurobiol. 31, 345–353 (2005).

    CAS  PubMed  Google Scholar 

  40. Banack, S. A., Murch, S. J. & Cox, P. A. Neurotoxic flying foxes as dietary items for the Chamorro people, Marianas Islands. J. Ethnopharmacol. 106, 97–104 (2006).

    PubMed  Google Scholar 

  41. Wiles, G. J. The status of fruit bats on Guam. Pac. Sci. 41, 1–4 (1987).

    Google Scholar 

  42. Morton, J. M. & Wiles, G. J. Observations of Mariana fruit bats (Pteropus mariannus) in the upper Talofofo watershed on southern Guam. Micronesica 34, 155–163 (2002).

    Google Scholar 

  43. Wiles, G. J. & Johnson, N. C. Population size and natural history of Mariana fruit bats (Chiroptera: Pteropodidae) on Sarigan, Mariana Islands. Pac. Sci. 58, 585–596 (2004).

    Google Scholar 

  44. Monson, C. S., Banack, S. A. & Cox, P. A. Conservation implications of Chamorro consumption of flying foxes as a possible cause of amyotrophic lateral sclerosis–parkinsonism dementia complex in Guam. Cons. Biol. 17, 678–686 (2003).

    Google Scholar 

  45. Foss, A. J., Chernoff, N. & Aubel, M. T. The analysis of undervaterizated ß-methylamino-l-alanine (BMAA), BAMA, AEG & 2,4-DAB in Pteropus mariannus mariannus specimens using HILIC-LC-MS/MS. Toxicon 152, 150–159 (2018).

    CAS  PubMed  Google Scholar 

  46. Steele, J. C. & McGeer, P. L. The ALS/PDC syndrome of Guam and the cycad hypothesis. Neurology 70, 1984–1990 (2008).

    PubMed  Google Scholar 

  47. Cox, T. A., McDarby, J. V., Lavine, L., Steele, J. C. & Calne, D. B. A retinopathy on Guam with high prevalence in Lytico–Bodig. Ophthalmology 96, 1731–1735 (1989).

    CAS  PubMed  Google Scholar 

  48. Kisby, G. E. & Spencer, P. S. Genotoxic damage during brain development presages prototypical neurodegenerative disease. Front. Neurol. 15, 752153 (2021).

    Google Scholar 

  49. Ahlskog, J. E. et al. Guamanian neurodegenerative disease: investigation of the calcium metabolism/heavy metal hypothesis. Neurology 45, 1340–1344 (1995).

    CAS  PubMed  Google Scholar 

  50. Durlach, J. et al. Are age-related neurodegenerative diseases linked with various types of magnesium depletion? Magnes. Res. 10, 339–353 (1997).

    CAS  PubMed  Google Scholar 

  51. Yanagihara, R. et al. Calcium and vitamin D metabolism in Guamanian Chamorros with amyotrophic lateral sclerosis and parkinsonism–dementia. Ann. Neurol. 15, 42–48 (1984).

    CAS  PubMed  Google Scholar 

  52. Poorkaj, P. et al. TAU as susceptibility gene for amyotrophic sclerosis–parkinsonism–dementia complex of Guam. Arch. Neurol. 58, 1871–1878 (2001).

    CAS  PubMed  Google Scholar 

  53. Sieh, W. et al. Identification of novel susceptibility loci for Guam neurodegenerative disease: challenges of genome scans in genetic isolates. Hum. Mol. Genet. 18, 3725–3738 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Dombroski, B. A. et al. C9orf72 hexanucleotide repeat expansion and Guam amyotrophic lateral sclerosis–parkinsonism–dementia complex. JAMA Neurol. 70, 742–745 (2013).

    PubMed  PubMed Central  Google Scholar 

  55. No author listed. ‘Kishu Koza no shou fuko no hito’ [An unhappy story of a unfilial man from Koza Village of Kii]. Honcho Koji Innen Shu Vol. 4, Edo (Tokyo) (Yorozuya Kinbe, 1689); translated into early modern Japanese in Iseido Sosho 847–908 (Kyoto Shibunkaku, 1970).

  56. Kuzuhara, S. ‘Endemic paraplegia of Koza in Kii’ in Honcho Koji Innen Shu published in 1689 is probably the earliest description of amyotrophic lateral sclerosis of Kii Peninsula: presentation of the original and investigation of factuality. Rinsho Shinkeigaku 61, 815–824 (2021).

    PubMed  Google Scholar 

  57. Miura, K. Amyotrophische lateral sklerose unter dem bilde von sog. bulbaerparalyse. Seishin Shinkeigaku Zasshi 10, 366–369 (1911).

    Google Scholar 

  58. Kimura, K., Yase, Y. & Higashi, Y. Epidemiological and geomedical studies on ALS and allied diseases in Kii peninsula (Japan). Preliminary report. Proc. Jpn. Acad. Sci. 37, 417–420 (1961).

    Google Scholar 

  59. Kimura, K. et al. Epidemiological and geomedical studies on amyotrophic lateral sclerosis. Dis. Nerv. Syst. 24, 155–159 (1963).

    Google Scholar 

  60. Shiraki, H. & Yase, Y. Amyotrophic lateral sclerosis in Japan. in Handbook of Clinical Neurology Vol. 22, part II (eds Vinken, P. J. & Bruyn, G. W.) 353–419 (Elsevier, 1975).

  61. Yoshida, S. Environmental factors in western Pacific foci of ALS and a possible pathogenetic role of aluminum (Al) in motor neuron degeneration [in Japanese with English abstract]. Rinsho Shinkeigaku 31, 1310–1312 (1991).

    CAS  PubMed  Google Scholar 

  62. Kuzuhara, S. et al. Familial amyotrophic lateral sclerosis and parkinsonism–dementia complex of the Kii peninsula of Japan: clinical and neuropathological study and tau analysis. Ann. Neurol. 49, 501–511 (2001).

    CAS  PubMed  Google Scholar 

  63. Mimuro, M., Yoshida, M., Kuzuhara, S. & Kokubo, Y. Amyotrophic lateral sclerosis and parkinsonism–dementia complex of the Hohara focus of the Kii peninsula: a multiple proteinopathy? Neuropathology 38, 98–107 (2018).

    CAS  PubMed  Google Scholar 

  64. Mimuro, M., Kokubo, Y. & Kuzuhara, S. Similar topographic distribution of neurofibrillary tangles in amyotrophic lateral sclerosis and parkinsonism–dementia complex in people living in the Kii peninsula of Japan suggests a single tauopathy. Acta Neuropathol. 113, 653–658 (2007).

    PubMed  Google Scholar 

  65. Shiraki, H. & Yase, Y. Amyotrophic lateral sclerosis and parkinsonism–dementia in the Kii peninsula: comparison with the same disorders in Guam and with Alzheimer’s disease. in Handbook of Clinical Neurology: Diseases of the Motor System (eds Vinken, P. J. et al.) 273–300 (Elsevier, 1991).

  66. Oyanagi, K. et al. Distinct pathological features of the Gallyas- and tau-positive glia in the parkinsonism–dementia complex and amyotrophic lateral sclerosis of Guam. J. Neuropathol. Exp. Neurol. 56, 308–316 (1997).

    CAS  PubMed  Google Scholar 

  67. Yamazaki, M. et al. Tau-positive fine granules in the cerebral white matter: a novel finding among tauopathies exclusive to parkinsonism–dementia complex of Guam. J. Neuropathol. Exp. Neurol. 64, 839–846 (2005).

    PubMed  Google Scholar 

  68. Kokubo, Y. & Kuzuhara, S. Neurofibrillary tangles in ALS and parkinsonism–dementia complex focus in Kii, Japan. Neurology 63, 2399–2401 (2004).

    PubMed  Google Scholar 

  69. Itoh, N. et al. Biochemical and ultrastructural study of neurofibrillary tangles in amyotrophic lateral sclerosis/parkinsonism–dementia complex in the Kii peninsula of Japan. J. Neuropathol. Exp. Neurol. 62, 791–798 (2003).

    CAS  PubMed  Google Scholar 

  70. Spencer, P. S. et al. Kampo medicine and Muro disease (amyotrophic lateral sclerosis and parkinsonism–dementia complex). eNeurologicalSci 18, 100230 (2020).

    PubMed  PubMed Central  Google Scholar 

  71. Kuzuhara, S. & Kokubo, Y. in Amyotrophic Lateral Sclerosis and the Frontotemporal Dementias (ed. Strong, M. J.) 39–54 (Oxford Univ. Press, 2012).

  72. Tomiyama, H. et al. Mutation analyses in amyotrophic lateral sclerosis/parkinsonism–dementia complex of the Kii peninsula, Japan. Mov. Disord. 23, 2344–2348 (2008).

    PubMed  Google Scholar 

  73. Hara, K. et al. TRPM7 is not associated with amyotrophic lateral sclerosis–parkinsonism dementia complex in the Kii peninsula of Japan. Am. J. Med. Genet. B Neuropsychiatr. Genet. 153B, 310–313 (2010).

    CAS  PubMed  Google Scholar 

  74. Hara, K. et al. Molecular-genetic analysis of amyotrophic lateral sclerosis/parkinsonism–dementia complex (ALS/PDC) in the Kii peninsula [in Japanese]. Rinsho Shinkeigaku 47, 974–976 (2007).

    PubMed  Google Scholar 

  75. Ishiura, H. et al. C9ORF72 repeat expansion in amyotrophic lateral sclerosis in the Kii peninsula of Japan. Arch. Neurol. 69, 1154–1158 (2012).

    PubMed  Google Scholar 

  76. Kokubo, Y. et al. An immigrant family with Kii amyotrophic lateral sclerosis/parkinsonism–dementia complex. Neurol. Sci. 43, 1423–1425 (2022).

    PubMed  Google Scholar 

  77. Spencer, P. S., Kisby, G. E. & Ludolp, A. C. Long-latency neurodegenerative disease in the western Pacific. Geriatrics 46, 37–42 (1991).

    PubMed  Google Scholar 

  78. Okumiya, K. et al. Amyotrophic lateral sclerosis and parkinsonism in Papua, Indonesia: 2001–2012 survey results. BMJ Open 4, e004353 (2014).

    PubMed  PubMed Central  Google Scholar 

  79. Spencer, P., Palmer, V. S. & Ludolph, A. C. On the decline and etiology of high-incidence motor system disease in West papua (Southwest New Guinea). Mov. Disord. 20, 119–126 (2005).

    Google Scholar 

  80. Gibbs, C. J. & Gajdusek, D. C. An update on long-term in vivo and in vitro studies designed to identify a virus as the cause of amyotrophic lateral sclerosis, parkinsonism dementia, and Parkinson’s disease. Adv. Neurol. 36, 343–353 (1982).

    PubMed  Google Scholar 

  81. Gajdusek, D. C. in Amyotrophic Lateral Sclerosis — Concepts in Pathogenesis and Etiology (ed. Hudson, A. J.) 317–325 (Univ. Toronto Press, 1990).

  82. Spencer, P. S. Parkinsonism and motor neuron disorders: lessons from the Western Pacific. J. Neurol. Sci. 433, 120021 (2022).

    CAS  PubMed  Google Scholar 

  83. Spencer, P. S., Palmer, V. S. & Kisby, G. E. Seeking environmental causes of neurodegenerative disease and envisioning primary prevention. Neurotoxicology 56, 269–283 (2016).

    PubMed  Google Scholar 

  84. Kisby, G. E., Kabel, H., Hugon, J. & Spencer, P. Damage and repair of nerve cell DNA in toxic stress. Drug Metab. Rev. 31, 589–618 (1999).

    CAS  PubMed  Google Scholar 

  85. Esclaire, F. et al. The Guam cycad toxin methylazoxymethanol damages neuronal DNA and modulate tau mRNA expression and excitotoxicity. Exp. Neurol. 155, 11–21 (1999).

    CAS  PubMed  Google Scholar 

  86. Spencer, P. S. Hypothesis: etiologic and molecular mechanistic leads for sporadic neurodegenerative diseases based on experience with Western Pacific ALS/PDC. Front. Neurol. 10, 754 (2019).

    PubMed  PubMed Central  Google Scholar 

  87. Vallely, A. & Tetu, M. A familial cluster of Parkinson’s disease identified in Milne Bay province, Papua New Guinea. PNG Med. J. 42, 27–31 (1999).

    CAS  Google Scholar 

  88. Fernandez, H. H. & Rosales, R. L. Uncovering the mystery from the Philippine island of Panay. Int. J. Neurosci. 121, 1–2 (2011).

    PubMed  Google Scholar 

  89. Laabs, B. H. et al. Identifying genetic modifiers of age-associated penetrance in X-linked dystonia-parkinsonism. Nat. Commun. 12, 3216 (2021).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  90. Rosales, R. L. X-linked dystonia parkinsonism: clinical phenotype, genetics and therapeutics. J. Mov. Disord. 3, 32–38 (2010).

    PubMed  PubMed Central  Google Scholar 

  91. Pauly, M. L. et al. Expanding data collection for the MDSGene database: X-linked dystonia-parkinsonism as use case example. Mov. Disord. 35, 1933–1938 (2020).

    PubMed  Google Scholar 

  92. Ng, A. R., Jamora, R. D. G. & Rosales, R. L. X‐linked dystonia parkinsonism: crossing a new threshold. J. Neur. Transm. 128, 567–573 (2021).

    Google Scholar 

  93. Sprenger, A. et al. Eye movement deficits in X-linked dystonia–parkinsonism are related to striatal degeneration. Parkinsonism Relat. Disord. 61, 170–178 (2019).

    PubMed  Google Scholar 

  94. Lee, L. V., Munoz, E. L., Tan, K. T. & Reyes, M. T. Sex linked recessive dystonia parkinsonism of Panay, Philippines (XDP). J. Clin. Mol. Pathol. 54, 362–368 (2001).

    CAS  Google Scholar 

  95. Goto, S. et al. Functional anatomy of the basal ganglia in X-linked recessive dystonia–parkinsonism. Ann. Neurol. 58, 7–17 (2005).

    PubMed  Google Scholar 

  96. Goto, S. et al. Defects in the striatal neuropeptide Y system in X-linked dystonia–parkinsonism. Brain 136, 1555–1567 (2013).

    PubMed  Google Scholar 

  97. Kawarai, T., Morigaki, R., Kaji, R. & Goto, S. Clinicopathological phenotype and genetics of X-linked dystonia–parkinsonism (XDP; DYT3; Lubag). Brain Sci. 7, 72 (2017).

    PubMed  PubMed Central  Google Scholar 

  98. Hanssen, H. et al. Imaging gradual neurodegeneration in a basal ganglia model disease. Ann. Neurol. 86, 517–526 (2019).

    CAS  PubMed  Google Scholar 

  99. Rosales, R. L., Ng, A. R., Delos Santos, M. M. & Fernandez, H. H. The broadening application of chemodenervation in X-linked dystonia–parkinsonism (part II): an open-label experience with botulinum toxin-A (Dysport®) injections for oromandibular, lingual, and truncal dystonias. Int. J. Neurosci. 121, 44–56 (2011).

    CAS  PubMed  Google Scholar 

  100. Brüggemann, N. et al. Association of pallidal neurostimulation and outcome predictors with X-linked dystonia–parkinsonism. JAMA Neurol. 76, 211–216 (2019).

    PubMed  Google Scholar 

  101. Aneichyk, T. et al. Dissecting the causal mechanism of X-linked dystonia–parkinsonism by integrating genome and transcriptome assembly. Cell 172, 897–909 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  102. Lüth, T. et al. Elucidating hexanucleotide repeat number and methylation within the X-linked dystonia–parkinsonism (XDP)-related SVA retrotransposon in TAF1 with nanopore sequencing. Genes 13, 126 (2022).

    PubMed  PubMed Central  Google Scholar 

  103. Di Lazzaro, G. et al. X-linked parkinsonism: phenotypic and genetic heterogeneity. Mov. Disord. 36, 1511–1525 (2021).

    PubMed  Google Scholar 

  104. Reyes, C. J. et al. Brain regional differences in hexanucleotide repeat length in X-linked dystonia–parkinsonism using nanopore sequencing. Neurol. Genet. 7, e608 (2021).

    PubMed  PubMed Central  Google Scholar 

  105. Westenberger, A. et al. A hexanucleotide repeat modifies expressivity of X-linked dystonia–parkinsonism. Ann. Neurol. 85, 812–822 (2019).

    CAS  PubMed  Google Scholar 

  106. Bragg, D. C. et al. Disease onset in X-linked dystonia–parkinsonism correlates with expansion of a hexameric repeat within an SVA retrotransposon in TAF1. Proc. Natl Acad. Sci. USA 114, E11020–E11028 (2017).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  107. Trinh, J. et al. Mosaic divergent repeat interruption in XDP influence repeat stability and disease onset. Brain 146, 1075–1082 (2023).

    PubMed  Google Scholar 

  108. Angibaud, G., Gaultier, C. & Rascol, O. Atypical parkinsonism and Annonaceae consumption in New Caledonia. Mov. Disord. 19, 603–605 (2004).

    PubMed  Google Scholar 

  109. Caparros-Lefebvre, D. Atypical parkinsonism in New Caledonia: comparisons with Guadeloupe and association with Annonaceae consumption. Mov. Disord. 19, 604–606 (2004).

    PubMed  Google Scholar 

  110. Lannuzel, A. et al. Further evidence for a distinctive atypical degenerative parkinsonism in the Caribbean: a new cluster in the French West Indian Island of Martinique. J. Neurol. Sci. 388, 214–219 (2018).

    PubMed  Google Scholar 

  111. Caparros-Lefebvre, D. & Elbaz, A. Possible relation of atypical parkinsonism in the French West Indies with consumption of tropical plants: a case–control study. Lancet 354, 281–286 (1999).

    CAS  PubMed  Google Scholar 

  112. Caparros-Lefebvre, D. et al. Guadeloupean parkinsonism: a cluster of progressive supranuclear palsy-like tauopathy. Brain 125, 801–811 (2002).

    PubMed  Google Scholar 

  113. Lannuzel, A. et al. Clinical varieties and epidemiological aspects of amyotrophic lateral sclerosis in the Caribbean Island of Guadeloupe: a new focus of ALS associated with parkinsonism. Amyotroph. Lateral Scler. Frontotemporal Degener. 16, 216–223 (2015).

    CAS  PubMed  Google Scholar 

  114. Moghdamtousi, S. Z. et al. Annona muricata (Annonaceae): a review of its traditional uses, isolated acetogenins and biological activities. Int. J. Mol. Sci. 16, 15625–15658 (2015).

    Google Scholar 

  115. Lannuzel, A. et al. Toxicity of Annonaceae for dopaminergic neurons: potential role in atypical parkinsonism in Guadeloupe. Mov. Disord. 17, 84–90 (2002).

    PubMed  Google Scholar 

  116. De Sousa, O. V., Vieira, G. D. V., de Pinho, J. D. J. R., Yamamoto, C. H. & Alves, M. S. Antinociceptive and anti-inflammatory activities of the ethanol extract of Annona muricata L. leaves in animal models. Int. J. Mol. Sci. 11, 2067–2078 (2010).

    PubMed  PubMed Central  Google Scholar 

  117. Mishra, S., Ahmad, S., Kumar, N. & Sharma, B. K. Annona muricata (the cancer killer): a review. Glob. J. Pharm. Res. 2, 1613–1618 (2013).

    Google Scholar 

  118. Ragasa, C. Y., Soriano, G., Torres, O. B., Don, M. J. & Shen, C. C. Acetogenins from Annona muricata. Pharm. J. 4, 32–37 (2012).

    CAS  Google Scholar 

  119. Lannuzel, A. et al. The mitochondrial complex I inhibitor annonacin is toxic to mesencephalic dopaminergic neurons by impairment of energy metabolism. Neuroscience 121, 287–296 (2003).

    CAS  PubMed  Google Scholar 

  120. Champy, P. et al. Annonacin, a lipophilic inhibitor of mitochondrial complex I, induces nigral and striatal neurodegeneration in rats: possible relevance for atypical parkinsonism in Guadeloupe. J. Neurochem. 88, 63–69 (2004).

    CAS  PubMed  Google Scholar 

  121. Lannuzel, A. et al. Atypical parkinsonism in Guadeloupe: a common risk factor for two closely related phenotypes? Brain 130, 816–827 (2007).

    PubMed  Google Scholar 

  122. Steele, J. C., Caparros-Lefebvre, D., Lees, A. J. & Sacks, O. W. Progressive supranuclear palsy and its relation to pacific foci of the parkinsonism–dementia complex and Guadeloupean parkinsonism. Parkinsonism Relat. Disord. 9, 39–54 (2002).

    PubMed  Google Scholar 

  123. DeCock, V. C. et al. REM sleep behavior disorder in patients with Guadeloupean parkinsonism, a tauopathy. Sleep 30, 1026–1032 (2007).

    Google Scholar 

  124. Camuzat, A. et al. The PSP-associated MAPT H1 subhaplotype in Guadeloupean atypical parkinsonism. Mov. Disord. 16, 2384–2391 (2008).

    Google Scholar 

  125. Kedari, T. S. & Khan, A. A. Guyabano (Annona muricata): a review of its traditional uses, phytochemistry and pharmacology. Am. J. Res. Comm. 2, 247–268 (2014).

    Google Scholar 

  126. Spencer, P. S. & Palmer, V. S. Food plant chemicals linked with neurological and neurodegenerative disease. Adv. Neurotoxicol. 1, 247–267 (2017).

    Google Scholar 

  127. Martí Massó, J. F., Zarranz, J. J., Otaegui, D. & López de Munain, A. Neurogenetic disorders in the Basque population. Ann. Hum. Genet. 79, 57–75 (2015).

    PubMed  Google Scholar 

  128. Paisán-Ruíz, C. et al. Cloning of the gene containing mutations that cause PARK8-linked Parkinson’s disease. Neuron 44, 595–600 (2004).

    PubMed  Google Scholar 

  129. Mata, I. F. et al. LRRK2 R1441G in Spanish patients with Parkinson’s disease. Neurosci. Lett. 382, 309–311 (2005).

    CAS  PubMed  Google Scholar 

  130. Simón-Sánchez, J. et al. Parkinson’s disease due to the R1441G mutations in dardarin: a founder effect in the Basques. Mov. Disord. 21, 1954–1959 (2006).

    PubMed  Google Scholar 

  131. González-Fernández, M. C. et al. LRRK2-associated parkinsonism is a major cause of disease in Northern Spain. Parkinsonism Relat. Disord. 13, 509–515 (2007).

    PubMed  Google Scholar 

  132. Deng, H., Wang, P. & Jankovic, J. The genetics of Parkinson’s disease. Ageing Res. Rev. 42, 72–85 (2018).

    CAS  PubMed  Google Scholar 

  133. López de Munain, A., Martí Massó, J. F. & Pérez Tur, J. The discovery of dardarin gene 15 years later: a globalized local history. Mov. Disord. 35, 708 (2020).

    PubMed  Google Scholar 

  134. Martí-Massó, J. F. et al. Neuropathology of Parkinson’s disease with the R1441G mutation in LRRK2. Mov. Disord. 24, 1998–2001 (2009).

    PubMed  Google Scholar 

  135. Mata, I. F. et al. LRRK2 mutations are a common cause of Parkinson’s disease in Spain. Eur. J. Neurol. 13, 391–394 (2006).

    CAS  PubMed  Google Scholar 

  136. Ruíz-Martínez, J. et al. Penetrance in Parkinson’s disease related to the LRRK2 R1441G mutation in the Basque-Country (Spain). Mov. Disord. 25, 2340–2345 (2010).

    PubMed  Google Scholar 

  137. Gorostidi, A., Ruiz-Martinez, J., Lopez de Munain, A., Alzualde, A. & Marti-Masso, J. F. LRRK2 G2019S and R1441G mutations associated with Parkinson’s disease are common in the Basque Country but relative prevalence is determined by ethnicity. Neurogenetics 10, 157–159 (2009).

    CAS  PubMed  Google Scholar 

  138. Hurles, M. E. et al. Recent male-mediated gene flow over linguistic barrier in Iberia, suggested by analysis of a Y-chromosomal DNA polymorphism. Am. J. Hum. Genet. 65, 1437–1448 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  139. Simpson, C. H. et al. Prevalence of the LRRK2 variants in Parkinson’s disease: a comprehensive review. Parkinsonism Relat. Disord. 98, 103–113 (2022).

    CAS  PubMed  Google Scholar 

  140. Zimprich, A. et al. A mutation in VPS35, encoding a subunit of the retromer complex, causes late-onset Parkinson’s disease. Am. J. Hum. Genet. 89, 168–175 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  141. Struhal, W. et al. VPS35 Parkinson’s disease phenotype resembles the sporadic disease. J. Neural Transm. 121, 755–759 (2014).

    CAS  PubMed  Google Scholar 

  142. Vilariño-Güell, C. et al. VPS35 mutations in Parkinson disease. Am. J. Hum. Genet. 89, 162–167 (2011).

    PubMed  PubMed Central  Google Scholar 

  143. Sheerin, U. M. et al. Screening for VPS35 mutations in Parkinson’s disease. Neurobiol. Aging 33, 838.e1–5 (2012).

    CAS  PubMed  Google Scholar 

  144. Ando, M. et al. VPS35 mutation in Japanese patients with typical Parkinson’s disease. Mov. Disord. 27, 1413–1417 (2012).

    CAS  PubMed  Google Scholar 

  145. Chen, Y., Chang, Y., Lan, M., Chen, P. & Lin, C. H. Identification of VPS35 p.D620N mutation related Parkinson’s disease in a Taiwanese family with successful bilateral subthalamic nucleus deep brain stimulation: a case report and literature review. BMC Neurol. 17, 191 (2017).

    PubMed  PubMed Central  Google Scholar 

  146. Caparros-Lefebvre, D. et al. A geographical cluster of progressive supranuclear palsy in Northern France. Neurology 85, 1293–1300 (2015).

    PubMed  PubMed Central  Google Scholar 

  147. Caparros-Lefebvre, D. Food toxins and the Caribbean Parkinson plus types. Rev. Neurol. 175, 641–643 (2019).

    CAS  PubMed  Google Scholar 

  148. Batelkova, K., Kolejka, J. & Pokorny, J. Landscape synthesis and geographical information systems as part of natural landscape assessment for regional planning: case study: Horňácko. Geography 101, 296–309 (1996).

    Google Scholar 

  149. Mensikova, K. et al. Prevalence of neurodegenerative parkinsonism in an isolated population in south-eastern Moravia, Czech Republic. Eur. J. Epidemiol. 28, 833–836 (2013).

    PubMed  Google Scholar 

  150. Mensikova, K. et al. Epidemiological study of neurodegenerative parkinsonism in Hornacko, a specific region of south-eastern Moravia, Czech Republic. Cesk. Slov. Neurol. N. 77/110, 714–720 (2014).

    Google Scholar 

  151. Frolec, V., Holy, D., & Hornácko, J. R. The Life and Culture of the People from Moravian-Slovakian Borderlands (Blok, 1996).

  152. Menšíková, K. et al. Atypical parkinsonism of progressive supranuclear palsy-parkinsonism (PSP-P) phenotype with rare variants in FBXO7 and VPS35 genes associated with Lewy body pathology. Acta Neuropathol. 137, 171–173 (2019).

    PubMed  Google Scholar 

  153. Kolarikova, K. et al. High throughput sequencing haplotype analysis indicates in the CHMP2B gene a potential risk factor for endemic parkinsonism in Southeastern Moravia, Czech Republic. Life 12, 121 (2022).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  154. Kolarikova, K. et al. Whole exome sequencing study in isolated South-Eastern Moravia (Czech Republic) population indicates heterogenous genetic background for parkinsonism development. Front. Neurosci. 16, 817713 (2022).

    PubMed  PubMed Central  Google Scholar 

  155. Bartoníková, T. et al. New endemic familial parkinsonism in south Moravia, Czech Republic and its genetic background. Medicine 97, e12313 (2018).

    PubMed  PubMed Central  Google Scholar 

  156. Lagrange, E. et al. An amyotrophic lateral sclerosis hot spot in the French Alps associated with genotoxic fungi. J. Neurol. Sci. 427, 117558 (2021).

    CAS  PubMed  Google Scholar 

  157. Schulzova, V. et al. Agaritine content of 53 Agaricus species collected from nature. Food Addit. Contam. 26, 82–93 (2009).

    CAS  Google Scholar 

  158. Patocka, J., Pita, R. & Kuca, K. Gyromitrin, mushroom toxin of Gyromitra spp. Mil. Med. Sci. Lett. 81, 61–67 (2012).

    Google Scholar 

  159. Steele, J. C. & Guzman, T. Observations about amyotrophic lateral sclerosis and the parkinsonism–dementia complex of Guam with regard to epidemiology and etiology. Can. J. Neurol. Sci. 14, 358–362 (1987).

    CAS  PubMed  Google Scholar 

  160. Román, G. C. Neuroepidemiology of amyotrophic lateral sclerosis: clues to aetiology and pathogenesis. J. Neurol. Neurosurg. Psychiatr. 61, 131–137 (1996).

    Google Scholar 

  161. de Langavant, L. C. et al. Annonaceae consumption worsens disease severity and cognitive deficits in degenerative parkinsonism. Mov. Disord. 37, 2355–2366 (2022).

    Google Scholar 

  162. Sacks, O. The Island of the Colorblind (Knopf-Doubleday, 1997).

Download references

Acknowledgements

The research work of authors is supported by the European Regional Development Fund — Project ENOCH (No. Z.02.1.01/0.0/0.0/16_019/0000868 to L.T., D.H., K.K. and M.S.); a grant from the Ministry of Health of the Czech Republic for the conceptual development of a research organization (FNOL 0098892) RVO FNOL 2022 to K.M., L.T. and D.H.; and Ministry of Health of the Czech Republic grant NV19-14-00090 to K.M., L.T., D.H. and R.M. The authors thank A. Johnson and S.E. Cook for language editing and thank A. Vydrova and Z. Malinska for providing the Supplementary figures. The authors thank the Third World Medical Research Foundation for providing the URL for the video ‘The poison that waits?’. The authors also thank J. Stankus for preparing the original version of Fig. 1, and D. Konickova for preparing the original version of Fig.3.

Author information

Authors and Affiliations

Authors

Contributions

K.M., J.C.S., R.R., P.S., A.L., Y.U., R.S., L.T., S.B., G.R. and P.K. researched data for the manuscript and/or contributed to its conceptualization. J.C.S., C.C., P.S., A.L., Y.U., S.G.-R., R.M., R. Vodicka and S.B. substantially contributed to discussions of the article content. P.K., K.M., R.R., D.H., L.T. and K.K. wrote the manuscript. P.H., P.O., R. Vrtel, M.P., M.B., L.B., G.R. and M.S. undertook critical reading of the manuscript. Figures and Supplementary information were provided by P.S., D.H. and L.T. (Fig. 5), S.B. (Fig. 4), L.B., M.S. and K.M. (Fig. 1), R.R. (Fig. 2, part C) and A.L. All authors reviewed and edited the entire manuscript.

Corresponding author

Correspondence to Petr Kaňovský.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Neurology thanks Kiyomitsu Oyanagi and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Related links

MDSGene: https://www.mdsgene.org/

OMIM: https://www.omim.org/

The Poison that Waits?: https://vimeo.com/1621281

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Menšíková, K., Steele, J.C., Rosales, R. et al. Endemic parkinsonism: clusters, biology and clinical features. Nat Rev Neurol 19, 599–616 (2023). https://doi.org/10.1038/s41582-023-00866-3

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41582-023-00866-3

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing