Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Pathophysiological insights into HFpEF from studies of human cardiac tissue

Abstract

Heart failure with preserved ejection fraction (HFpEF) is a major, worldwide health-care problem. Few therapies for HFpEF exist because the pathophysiology of this condition is poorly defined and, increasingly, postulated to be diverse. Although perturbations in other organs contribute to the clinical profile in HFpEF, altered cardiac structure, function or both are the primary causes of this heart failure syndrome. Therefore, studying myocardial tissue is fundamental to improve pathophysiological insights and therapeutic discovery in HFpEF. Most studies of myocardial changes in HFpEF have relied on cardiac tissue from animal models without (or with limited) confirmatory studies in human cardiac tissue. Animal models of HFpEF have evolved based on theoretical HFpEF aetiologies, but these models might not reflect the complex pathophysiology of human HFpEF. The focus of this Review is the pathophysiological insights gained from studies of human HFpEF myocardium. We outline the rationale for these studies, the challenges and opportunities in obtaining myocardial tissue from patients with HFpEF and relevant comparator groups, the analytical approaches, the pathophysiological insights gained to date and the remaining knowledge gaps. Our objective is to provide a roadmap for future studies of cardiac tissue from diverse cohorts of patients with HFpEF, coupling discovery biology with measures to account for pathophysiological diversity.

Key points

  • Few studies of cardiac tissue from patients with heart failure with preserved ejection fraction (HFpEF) and comparator groups have been published.

  • Most of these studies were small and showed variability in tissue source, case–control ascertainment and analytical approaches.

  • Cardiac tissue samples from patients with HFpEF show variable degrees of myocardial fibrosis, hypertrophy, microvascular rarefaction, T-tubule disruption, systolic and diastolic dysfunction and impaired metabolism.

  • Only eight candidate pathophysiological pathways have been examined in hypothesis-driven studies of cardiac tissue from patients with HFpEF, and these studies have not led to consensus on its pathophysiology.

  • Only four studies used discovery transcriptomics or proteomic technologies in cardiac tissue from patients with HFpEF and comparators, and showed intriguing, but highly variable, findings.

  • Studies of heart tissue in large and diverse cohorts of patients with HFpEF are urgently needed, with discovery multiomics, appropriate bioinformatic analyses and rigorous validation to address pathophysiological diversity and gain novel therapeutic insights.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Structural, functional and metabolic alterations in the myocardium from patients with HFpEF.
Fig. 2: Pathophysiological mechanisms in human HFpEF.
Fig. 3: Studies of tissue samples from patients with HFpEF and comparators.

Similar content being viewed by others

References

  1. Savarese, G. et al. Global burden of heart failure: a comprehensive and updated review of epidemiology. Cardiovasc Res. 118, 3272–3287 (2022).

    Article  CAS  Google Scholar 

  2. Borlaug, B. A., Sharma, K., Shah, S. J. & Ho, J. E. Heart failure with preserved ejection fraction: JACC scientific statement. J. Am. Coll. Cardiol. 81, 1810–1834 (2023).

    Article  PubMed  Google Scholar 

  3. Dunlay, S. M., Roger, V. L. & Redfield, M. M. Epidemiology of heart failure with preserved ejection fraction. Nat. Rev. Cardiol. 14, 591–602 (2017).

    Article  PubMed  Google Scholar 

  4. Redfield, M. M. & Borlaug, B. A. Heart failure with preserved ejection fraction: a review. JAMA 329, 827–838 (2023).

    Article  PubMed  Google Scholar 

  5. Desai, A. S., Lam, C. S. P., McMurray, J. J. V. & Redfield, M. M. How to manage heart failure with preserved ejection fraction: practical guidance for clinicians. JACC Heart Fail. 11, 619–636 (2023).

    Article  PubMed  Google Scholar 

  6. Barnett, K. et al. Epidemiology of multimorbidity and implications for health care, research, and medical education: a cross-sectional study. Lancet 380, 37–43 (2012).

    Article  PubMed  Google Scholar 

  7. Kumanyika, S. & Dietz, W. H. Solving population-wide obesity – progress and future prospects. N. Engl. J. Med. 383, 2197–2200 (2020).

    Article  PubMed  Google Scholar 

  8. Mossadeghi, B. et al. Multimorbidity and social determinants of health in the US prior to the COVID-19 pandemic and implications for health outcomes: a cross-sectional analysis based on NHANES 2017-2018. BMC Public. Health 23, 887 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  9. Chamberlain, A. M. et al. Multimorbidity in heart failure: a community perspective. Am. J. Med. 128, 38–45 (2015).

    Article  PubMed  Google Scholar 

  10. Teramoto, K. et al. Epidemiology and clinical features of heart failure with preserved ejection fraction. Card. Fail. Rev. 8, e27 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  11. Borlaug, B. A. et al. Obesity and heart failure with preserved ejection fraction: new insights and pathophysiologic targets. Cardiovasc. Res. 118, 3434–3450 (2022).

    Article  CAS  PubMed Central  Google Scholar 

  12. Campbell, R. T. et al. What have we learned about patients with heart failure and preserved ejection fraction from DIG-PEF, CHARM-preserved, and I-PRESERVE? J. Am. Coll. Cardiol. 60, 2349–2356 (2012).

    Article  PubMed  Google Scholar 

  13. Mohammed, S. F. et al. Comorbidity and ventricular and vascular structure and function in heart failure with preserved ejection fraction: a community-based study. Circ. Heart Fail. 5, 710–719 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  14. Paulus, W. J. & Tschope, C. A novel paradigm for heart failure with preserved ejection fraction: comorbidities drive myocardial dysfunction and remodeling through coronary microvascular endothelial inflammation. J. Am. Coll. Cardiol. 62, 263–271 (2013).

    Article  PubMed  Google Scholar 

  15. Joseph, J. et al. Genetic architecture of heart failure with preserved versus reduced ejection fraction. Nat. Commun. 13, 7753 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Bozkurt, B. et al. Universal definition and classification of heart failure: a Report of the Heart Failure Society of America, Heart Failure Association of the European Society of Cardiology, Japanese Heart Failure Society and Writing Committee of the Universal Definition of Heart Failure. J. Card. Fail. 23, 352–380 (2021).

    Google Scholar 

  17. Charles, C. J., Rademaker, M. T., Scott, N. J. A. & Richards, A. M. Large animal models of heart failure: reduced vs. preserved ejection fraction. Animals 10, 1906 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  18. Smith, A. N. et al. Genomic, proteomic, and metabolic comparisons of small animal models of heart failure with preserved ejection fraction: a tale of mice, rats, and cats. J. Am. Heart Assoc. 11, e026071 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Shapiro, B. P. et al. Mineralocorticoid signaling in transition to heart failure with normal ejection fraction. Hypertension 51, 289–295 (2008).

    Article  CAS  PubMed  Google Scholar 

  20. Schiattarella, G. G. et al. Nitrosative stress drives heart failure with preserved ejection fraction. Nature 568, 351–356 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Conceicao, G., Heinonen, I., Lourenco, A. P., Duncker, D. J. & Falcao-Pires, I. Animal models of heart failure with preserved ejection fraction. Neth. Heart J. 24, 275–286 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Valero-Munoz, M., Backman, W. & Sam, F. Murine models of heart failure with preserved ejection fraction: a “fishing expedition”. JACC Basic. Transl. Sci. 2, 770–789 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  23. Lerman, L. O. et al. Animal models of hypertension: a scientific statement from the American Heart Association. Hypertension 73, e87–e120 (2019).

    Article  CAS  PubMed  Google Scholar 

  24. Tong, D. et al. Female sex is protective in a preclinical model of heart failure with preserved ejection fraction. Circulation 140, 1769–1771 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  25. Du, X. J. Gender modulates cardiac phenotype development in genetically modified mice. Cardiovasc. Res. 63, 510–519 (2004).

    Article  CAS  PubMed  Google Scholar 

  26. Selvaraj, S. et al. Systolic blood pressure in heart failure with preserved ejection fraction treated with sacubitril/valsartan. J. Am. Coll. Cardiol. 75, 1644–1656 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Hackam, D. G. & Redelmeier, D. A. Translation of research evidence from animals to humans. JAMA 296, 1731–1732 (2006).

    Article  CAS  PubMed  Google Scholar 

  28. Vyas, M. V., Gros, R. & Hackam, D. G. Translation of cardiovascular animal models to human randomized trials. Am. J. Cardiol. 137, 141 (2020).

    Article  PubMed  Google Scholar 

  29. McGonigle, P. & Ruggeri, B. Animal models of human disease: challenges in enabling translation. Biochem. Pharmacol. 87, 162–171 (2014).

    Article  CAS  PubMed  Google Scholar 

  30. Bishu, K. et al. Sildenafil and B-type natriuretic peptide acutely phosphorylate titin and improve diastolic distensibility in vivo. Circulation 124, 2882–2891 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Takimoto, E. et al. Chronic inhibition of cyclic GMP phosphodiesterase 5A prevents and reverses cardiac hypertrophy. Nat. Med. 11, 214–222 (2005).

    Article  CAS  PubMed  Google Scholar 

  32. Bermejo, J. et al. Sildenafil for improving outcomes in patients with corrected valvular heart disease and persistent pulmonary hypertension: a multicenter, double-blind, randomized clinical trial. Eur. Heart J. 39, 1255–1264 (2018).

    Article  CAS  PubMed  Google Scholar 

  33. Desai, A. S. et al. Rationale and design of the treatment of preserved cardiac function heart failure with an aldosterone antagonist trial: a randomized, controlled study of spironolactone in patients with symptomatic heart failure and preserved ejection fraction. Am. Heart J. 162, 966–972.e10 (2011).

    Article  CAS  PubMed  Google Scholar 

  34. Sangaralingham, S. J., Kuhn, M., Cannone, V., Chen, H. H. & Burnett, J. C. Natriuretic peptide pathways in heart failure: further therapeutic possibilities. Cardiovasc. Res. 118, 3416–3433 (2023).

    Article  PubMed  Google Scholar 

  35. Lewis, G. A. et al. Pirfenidone in heart failure with preserved ejection fraction: a randomized phase 2 trial. Nat. Med. 27, 1477–1482 (2021).

    Article  CAS  PubMed  Google Scholar 

  36. Hahn, V. S. et al. Endomyocardial biopsy characterization of heart failure with preserved ejection fraction and prevalence of cardiac amyloidosis. JACC Heart Fail. 8, 712–724 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  37. Aoki, T. et al. Prognostic impact of myocardial interstitial fibrosis in non-ischemic heart failure. Comparison between preserved and reduced ejection fraction heart failure. Circ. J. 75, 2605–2613 (2011).

    Article  CAS  PubMed  Google Scholar 

  38. Kasner, M. et al. Multimodality imaging approach in the diagnosis of chronic myocarditis with preserved left ventricular ejection fraction (MCpEF): the role of 2D speckle-tracking echocardiography. Int. J. Cardiol. 243, 374–378 (2017).

    Article  PubMed  Google Scholar 

  39. Kasner, M. et al. Functional iron deficiency and diastolic function in heart failure with preserved ejection fraction. Int. J. Cardiol. 168, 4652–4657 (2013).

    Article  PubMed  Google Scholar 

  40. Kasner, M. et al. Simultaneous estimation of NT-proBNP on top to mitral flow Doppler echocardiography as an accurate strategy to diagnose diastolic dysfunction in HFNEF. Int. J. Cardiol. 149, 23–29 (2011).

    Article  PubMed  Google Scholar 

  41. Kasner, M. et al. Diastolic tissue Doppler indexes correlate with the degree of collagen expression and cross-linking in heart failure and normal ejection fraction. J. Am. Coll. Cardiol. 57, 977–985 (2011).

    Article  CAS  PubMed  Google Scholar 

  42. Lee, D. I. et al. Phosphodiesterase 9A controls nitric-oxide-independent cGMP and hypertrophic heart disease. Nature 519, 472–476 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Westermann, D. et al. Cardiac inflammation contributes to changes in the extracellular matrix in patients with heart failure and normal ejection fraction. Circ. Heart Fail. 4, 44–52 (2011).

    Article  PubMed  Google Scholar 

  44. Yang, J. et al. Targeting LOXL2 for cardiac interstitial fibrosis and heart failure treatment. Nat. Commun. 7, 13710 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Aslam, M. I. et al. Reduced right ventricular sarcomere contractility in heart failure with preserved ejection fraction and severe obesity. Circulation 143, 965–967 (2021).

    Article  PubMed  Google Scholar 

  46. Hahn, V. S. et al. Myocardial gene expression signatures in human heart failure with preserved ejection fraction. Circulation 143, 120–134 (2021).

    Article  CAS  PubMed  Google Scholar 

  47. Hahn, V. S. et al. Myocardial metabolomics of human heart failure with preserved ejection fraction. Circulation 147, 1147–1161 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Besler, C. et al. Evaluation of phosphodiesterase 9A as a novel biomarker in heart failure with preserved ejection fraction. ESC Heart Fail. 8, 1861–1872 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  49. Borbely, A. et al. Cardiomyocyte stiffness in diastolic heart failure. Circulation 111, 774–781 (2005).

    Article  PubMed  Google Scholar 

  50. Franssen, C. et al. Myocardial microvascular inflammatory endothelial activation in heart failure with preserved ejection fraction. JACC Heart Fail. 4, 312–324 (2016).

    Article  PubMed  Google Scholar 

  51. Friebel, J. et al. Protease-activated receptor 2 deficiency mediates cardiac fibrosis and diastolic dysfunction. Eur. Heart J. 40, 3318–3332 (2019).

    Article  PubMed  Google Scholar 

  52. Hamdani, N. et al. Distinct myocardial effects of beta-blocker therapy in heart failure with normal and reduced left ventricular ejection fraction. Eur. Heart J. 30, 1863–1872 (2009).

    Article  CAS  PubMed  Google Scholar 

  53. Kolijn, D. et al. Enhanced cardiomyocyte function in hypertensive rats with diastolic dysfunction and human heart failure patients after acute treatment with soluble guanylyl cyclase (sGC) activator. Front. Physiol. 11, 345 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  54. Kolijn, D. et al. Empagliflozin improves endothelial and cardiomyocyte function in human heart failure with preserved ejection fraction via reduced pro-inflammatory-oxidative pathways and protein kinase Gα oxidation. Cardiovasc. Res. 117, 495–507 (2021).

    Article  CAS  PubMed  Google Scholar 

  55. Kühl, U. et al. Viral persistence in the myocardium is associated with progressive cardiac dysfunction. Circulation 112, 1965–1970 (2005).

    Article  PubMed  Google Scholar 

  56. Pabel, S. et al. Empagliflozin directly improves diastolic function in human heart failure. Eur. J. Heart Fail. 20, 1690–1700 (2018).

    Article  CAS  PubMed  Google Scholar 

  57. Tong, D. et al. NAD+ repletion reverses heart failure with preserved ejection fraction. Circ. Res. 128, 1629–1641 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Tschöpe, C. et al. High prevalence of cardiac parvovirus B19 infection in patients with isolated left ventricular diastolic dysfunction. Circulation 111, 879–886 (2005).

    Article  PubMed  Google Scholar 

  59. van Heerebeek, L. et al. Myocardial structure and function differ in systolic and diastolic heart failure. Circulation 113, 1966–1973 (2006).

    Article  PubMed  Google Scholar 

  60. van Heerebeek, L. et al. Low myocardial protein kinase G activity in heart failure with preserved ejection fraction. Circulation 126, 830–839 (2012).

    Article  PubMed  Google Scholar 

  61. van Heerebeek, L. et al. Diastolic stiffness of the failing diabetic heart: importance of fibrosis, advanced glycation end products, and myocyte resting tension. Circulation 117, 43–51 (2008).

    Article  PubMed  Google Scholar 

  62. Yousefi, K. et al. osteopontin promotes left ventricular diastolic dysfunction through a mitochondrial pathway. J. Am. Coll. Cardiol. 73, 2705–2718 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Lopez, B., Gonzalez, A., Querejeta, R., Larman, M. & Diez, J. Alterations in the pattern of collagen deposition may contribute to the deterioration of systolic function in hypertensive patients with heart failure. J. Am. Coll. Cardiol. 48, 89–96 (2006).

    Article  CAS  PubMed  Google Scholar 

  64. Querejeta, R. et al. Increased collagen type I synthesis in patients with heart failure of hypertensive origin: relation to myocardial fibrosis. Circulation 110, 1263–1268 (2004).

    Article  CAS  PubMed  Google Scholar 

  65. Hull, J. V. et al. Risks of right heart catheterization and right ventricular biopsy: a 12-year, single-center experience. Mayo Clin. Proc. 98, 419–431 (2023).

    Article  PubMed  Google Scholar 

  66. LeWinter, M. M. et al. Abundance, localization, and functional correlates of the advanced glycation end-product carboxymethyl lysine in human myocardium. Physiol. Rep. 5, e13462 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  67. Robinson, E. L. et al. Dissecting the transcriptome in cardiovascular disease. Cardiovasc. Res. 118, 1004–1019 (2022).

    Article  CAS  PubMed  Google Scholar 

  68. Muehlschlegel, J. D. et al. Using next-generation RNA sequencing to examine ischemic changes induced by cold blood cardioplegia on the human left ventricular myocardium transcriptome. Anesthesiology 122, 537–550 (2015).

    Article  CAS  PubMed  Google Scholar 

  69. Stone, G. et al. Sex differences in gene expression in response to ischemia in the human left ventricular myocardium. Hum. Mol. Genet. 28, 1682–1693 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Chaffin, M. et al. Single-nucleus profiling of human dilated and hypertrophic cardiomyopathy. Nature 608, 174–180 (2022).

    Article  CAS  PubMed  Google Scholar 

  71. Liu, C. F. et al. Whole-transcriptome profiling of human heart tissues reveals the potential novel players and regulatory networks in different cardiomyopathy subtypes of heart failure. Circ. Genom. Precis. Med. 14, e003142 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Margulies, K. B. et al. Mixed messages: transcription patterns in failing and recovering human myocardium. Circ. Res. 96, 592–599 (2005).

    Article  CAS  PubMed  Google Scholar 

  73. Abdellatif, M. et al. Nicotinamide for the treatment of heart failure with preserved ejection fraction. Sci. Transl. Med. 13, eabd7064 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Power, B. M. & Van Heerden, P. V. The physiological changes associated with brain death – current concepts and implications for treatment of the brain dead organ donor. Anaesth. Intensive Care 23, 26–36 (1995).

    Article  CAS  PubMed  Google Scholar 

  75. Khush, K. K. et al. Left ventricular dysfunction associated with brain death: results from the Donor Heart Study. Circulation 148, 822–833 (2023).

    Article  PubMed  Google Scholar 

  76. Lei, I. et al. “The secret life of human donor hearts”: an examination of transcriptomic events during cold storage. Circ. Heart Fail. 13, e006409 (2020).

    Article  CAS  PubMed  Google Scholar 

  77. Flam, E. et al. Integrated landscape of cardiac metabolism in end-stage human nonischemic dilated cardiomyopathy. Nat. Cardiovasc. Res. 1, 817–829 (2022).

    PubMed  PubMed Central  Google Scholar 

  78. Mohammed, S. F. et al. Coronary microvascular rarefaction and myocardial fibrosis in heart failure with preserved ejection fraction. Circulation 131, 550–559 (2015).

    Article  PubMed  Google Scholar 

  79. Mohammed, S. F. et al. Left ventricular amyloid deposition in patients with heart failure and preserved ejection fraction. JACC Heart Fail. 2, 113–122 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  80. Fayyaz, A. U. et al. Histologic and proteomic remodeling of the pulmonary veins and arteries in a porcine model of chronic pulmonary venous hypertension. Cardiovasc. Res. 119, 268–282 (2023).

    Article  CAS  PubMed  Google Scholar 

  81. Judge, D. P. & Brown, E. E. Bringing autopsies into the molecular genetic era. Circulation 137, 2727–2729 (2018).

    Article  PubMed  Google Scholar 

  82. Thiene, G. & Saffitz, J. E. Autopsy as a source of discovery in cardiovascular medicine: then and now. Circulation 137, 2683–2685 (2018).

    Article  PubMed  Google Scholar 

  83. Cocariu, E. A. et al. Correlations between the autolytic changes and postmortem interval in refrigerated cadavers. Rom. J. Intern. Med. 54, 105–112 (2016).

    PubMed  Google Scholar 

  84. Doll, S. et al. Region and cell-type resolved quantitative proteomic map of the human heart. Nat. Commun. 8, 1469 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  85. Herrington, D. M. et al. Proteomic architecture of human coronary and aortic atherosclerosis. Circulation 137, 2741–2756 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Tucker, N. R. et al. Transcriptional and cellular diversity of the human heart. Circulation 142, 466–482 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Garmany, R. et al. Multi-omic architecture of obstructive hypertrophic cardiomyopathy. Circ. Genom. Precis. Med. 16, e003756 (2023).

    Article  CAS  PubMed  Google Scholar 

  88. Litvinukova, M. et al. Cells of the adult human heart. Nature 588, 466–472 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Liu, C. F. et al. Global analysis of histone modifications and long-range chromatin interactions revealed the differential cistrome changes and novel transcriptional players in human dilated cardiomyopathy. J. Mol. Cell Cardiol. 145, 30–42 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Liu, J. et al. Transcriptional and immune landscape of cardiac sarcoidosis. Circ. Res. 131, 654–669 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Reichart, D. et al. Pathogenic variants damage cell composition and single cell transcription in cardiomyopathies. Science 377, eabo1984 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. van Heesch, S. et al. The translational landscape of the human heart. Cell 178, 242–260.e29 (2019).

    Article  PubMed  Google Scholar 

  93. Nirschl, J. J. et al. A deep-learning classifier identifies patients with clinical heart failure using whole-slide images of H&E tissue. PLoS ONE 13, e0192726 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  94. Peyster, E. G. et al. An automated computational image analysis pipeline for histological grading of cardiac allograft rejection. Eur. Heart J. 42, 2356–2369 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Kitata, R. B., Yang, J. C. & Chen, Y. J. Advances in data-independent acquisition mass spectrometry towards comprehensive digital proteome landscape. Mass. Spectrom. Rev. 42, 2324–2348 (2023).

    Article  CAS  PubMed  Google Scholar 

  96. Messner, C. B. et al. Mass spectrometry-based high-throughput proteomics and its role in biomedical studies and systems biology. Proteomics 23, e2200013 (2023).

    Article  PubMed  Google Scholar 

  97. Cui, Y. et al. Single-cell transcriptome analysis maps the developmental track of the human heart. Cell Rep. 26, 1934–1950.e5 (2019).

    Article  CAS  PubMed  Google Scholar 

  98. Gladka, M. M. et al. Single-cell sequencing of the healthy and diseased heart reveals cytoskeleton-associated protein 4 as a new modulator of fibroblasts activation. Circulation 138, 166–180 (2018).

    Article  CAS  PubMed  Google Scholar 

  99. He, S. et al. High-plex imaging of RNA and proteins at subcellular resolution in fixed tissue by spatial molecular imaging. Nat. Biotechnol. 40, 1794–1806 (2022).

    Article  CAS  PubMed  Google Scholar 

  100. Blaser, M. C., Kraler, S., Luscher, T. F. & Aikawa, E. Multi-omics approaches to define calcific aortic valve disease pathogenesis. Circ. Res. 128, 1371–1397 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Ferrucci, L. et al. Transcriptomic and proteomic of gastrocnemius muscle in peripheral artery disease. Circ. Res. 132, 1428–1443 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Joshi, A., Rienks, M., Theofilatos, K. & Mayr, M. Systems biology in cardiovascular disease: a multiomics approach. Nat. Rev. Cardiol. 18, 313–330 (2021).

    Article  PubMed  Google Scholar 

  103. Guo, Y., Zhao, S., Li, C. I., Sheng, Q. & Shyr, Y. RNAseqPS: a web tool for estimating sample size and power for RNAseq experiment. Cancer Inform. 13, 1–5 (2014).

    PubMed  PubMed Central  Google Scholar 

  104. Love, M. I., Huber, W. & Anders, S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 15, 550 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  105. Saccenti, E. & Timmerman, M. E. Approaches to sample size determination for multivariate data: applications to PCA and PLS-DA of omics data. J. Proteome Res. 15, 2379–2393 (2016).

    Article  CAS  PubMed  Google Scholar 

  106. Squair, J. W. et al. Confronting false discoveries in single-cell differential expression. Nat. Commun. 12, 5692 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Ahmad, S. et al. The functional consequences of sodium channel NaV 1.8 in human left ventricular hypertrophy. ESC Heart Fail 6, 154–163 (2019).

    Article  PubMed  Google Scholar 

  108. Chaanine, A. H. et al. Mitochondrial morphology, dynamics, and function in human pressure overload or ischemic heart disease with preserved or reduced ejection fraction. Circ. Heart Fail. 12, e005131 (2019).

    Article  CAS  PubMed  Google Scholar 

  109. D’Assante, R. et al. Myocardial expression of somatotropic axis, adrenergic signalling, and calcium handling genes in heart failure with preserved ejection fraction and heart failure with reduced ejection fraction. ESC Heart Fail. 8, 1681–1686 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  110. Das, S. et al. Transcriptomics of cardiac biopsies reveals differences in patients with or without diagnostic parameters for heart failure with preserved ejection fraction. Sci. Rep. 9, 3179 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  111. Davila, A. et al. Adenosine kinase inhibition augments conducted vasodilation and prevents left ventricle diastolic dysfunction in heart failure with preserved ejection fraction. Circ. Heart Fail. 12, e005762 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Donaldson, C. et al. Myosin cross-bridge dynamics in patients with hypertension and concentric left ventricular remodeling. Circ. Heart Fail. 5, 803–811 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  113. Falcao-Pires, I. et al. Diabetes mellitus worsens diastolic left ventricular dysfunction in aortic stenosis through altered myocardial structure and cardiomyocyte stiffness. Circulation 124, 1151–1159 (2011).

    Article  PubMed  Google Scholar 

  114. Frisk, M. et al. Etiology-dependent impairment of diastolic cardiomyocyte calcium homeostasis in heart failure with preserved ejection fraction. J. Am. Coll. Cardiol. 77, 405–419 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Gao, Q., He, S., Peng, Y., Su, P. & Zhao, L. Proteomic profiling of epicardial fat in heart failure with preserved versus reduced and mildly reduced ejection fraction. J. Cell Mol. Med. 27, 727–735 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. He, S. et al. Proteomic analysis of epicardial adipose tissue from heart disease patients with concomitant heart failure with preserved ejection fraction. Int. J. Cardiol. 362, 118–125 (2022).

    Article  PubMed  Google Scholar 

  117. Heymans, S. et al. Increased cardiac expression of tissue inhibitor of metalloproteinase-1 and tissue inhibitor of metalloproteinase-2 is related to cardiac fibrosis and dysfunction in the chronic pressure-overloaded human heart. Circulation 112, 1136–1144 (2005).

    Article  CAS  PubMed  Google Scholar 

  118. Hulsmans, M. et al. Cardiac macrophages promote diastolic dysfunction. J. Exp. Med. 215, 423–440 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Merino, D. et al. BMP-7 attenuates left ventricular remodelling under pressure overload and facilitates reverse remodelling and functional recovery. Cardiovasc. Res. 110, 331–345 (2016).

    Article  CAS  PubMed  Google Scholar 

  120. Perez-Belmonte, L. M. et al. Expression of epicardial adipose tissue thermogenic genes in patients with reduced and preserved ejection fraction heart failure. Int. J. Med. Sci. 14, 891–895 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Peterzan, M. A. et al. Cardiac energetics in patients with aortic stenosis and preserved versus reduced ejection fraction. Circulation 141, 1971–1985 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  122. Runte, K. E. et al. Relaxation and the role of calcium in isolated contracting myocardium from patients with hypertensive heart disease and heart failure with preserved ejection fraction. Circ. Heart Fail. 10, e004311 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Sato, M. et al. Proteome analysis demonstrates involvement of endoplasmic reticulum stress response in human myocardium with subclinical left ventricular diastolic dysfunction. Geriatr. Gerontol. Int. 21, 577–583 (2021).

    Article  PubMed  Google Scholar 

  124. Sebastiao, M. J. et al. Unveiling human proteome signatures of heart failure with preserved ejection fraction. Biomedicines 10, 2943 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Stadiotti, I. et al. Pressure overload activates DNA-damage response in cardiac stromal cells: a novel mechanism behind heart failure with preserved ejection fraction? Front. Cardiovasc. Med. 9, 878268 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Trum, M. et al. Empagliflozin inhibits Na+/H+ exchanger activity in human atrial cardiomyocytes. ESC Heart Fail. 7, 4429–4437 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  127. Zhang, Y. et al. Phenotypic characterization of primary cardiac fibroblasts from patients with HFpEF. PLoS ONE 17, e0262479 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Zile, M. R. et al. Myocardial stiffness in patients with heart failure and a preserved ejection fraction: contributions of collagen and titin. Circulation 131, 1247–1259 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Heidenreich, P. A. et al. 2022 AHA/ACC/HFSA guideline for the management of heart failure: a report of the American College of Cardiology/American Heart Association Joint Committee on Clinical Practice Guidelines. J. Am. Coll. Cardiol. 79, e263–e421 (2022).

    Article  PubMed  Google Scholar 

  130. Mohammed, S. F., Majure, D. T. & Redfield, M. M. Zooming in on the microvasculature in heart failure with preserved ejection fraction. Circ. Heart Fail. 9, e003272 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  131. Burkhoff, D. et al. Levosimendan improves hemodynamics and exercise tolerance in PH-HFpEF: results of the randomized placebo-controlled HELP trial. JACC Heart Fail. 9, 360–370 (2021).

    Article  PubMed  Google Scholar 

  132. Capone, F., Vettor, R. & Schiattarella, G. G. Cardiometabolic HFpEF: NASH of the heart. Circulation 147, 451–453 (2023).

    Article  PubMed  Google Scholar 

  133. Krajcova, A. et al. High resolution respirometry to assess function of mitochondria in native homogenates of human heart muscle. PLoS ONE 15, e0226142 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Sabbah, M. S. et al. Obese-inflammatory phenotypes in heart failure with preserved ejection fraction. Circ. Heart Fail. 13, e006414 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Hetz, C., Zhang, K. & Kaufman, R. J. Mechanisms, regulation and functions of the unfolded protein response. Nat. Rev. Mol. Cell Biol. 21, 421–438 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Schiattarella, G. G. et al. Xbp1s-FoxO1 axis governs lipid accumulation and contractile performance in heart failure with preserved ejection fraction. Nat. Commun. 12, 1684 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Wu, L., Sowers, J. R., Zhang, Y. & Ren, J. Targeting DNA damage response in cardiovascular diseases: from pathophysiology to therapeutic implications. Cardiovasc. Res. 119, 691–709 (2023).

    Article  CAS  PubMed  Google Scholar 

  138. Packer, M. Epicardial adipose tissue may mediate deleterious effects of obesity and inflammation on the myocardium. J. Am. Coll. Cardiol. 71, 2360–2372 (2018).

    Article  CAS  PubMed  Google Scholar 

  139. Little, W. C. et al. The effect of alagebrium chloride (ALT-711), a novel glucose cross-link breaker, in the treatment of elderly patients with diastolic heart failure. J. Card. Fail. 11, 191–195 (2005).

    Article  CAS  PubMed  Google Scholar 

  140. Van Tassell, B. W. et al. IL-1 blockade in patients with heart failure with preserved ejection fraction. Circ. Heart Fail. 11, e005036 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  141. Van Tassell, B. W. et al. Effects of interleukin-1 blockade with anakinra on aerobic exercise capacity in patients with heart failure and preserved ejection fraction (from the D-HART pilot study). Am. J. Cardiol. 113, 321–327 (2014).

    Article  PubMed  Google Scholar 

  142. Yura, Y., Sano, S. & Walsh, K. Clonal hematopoiesis: a new step linking inflammation to heart failure. JACC Basic. Transl. Sci. 5, 196–207 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  143. Lindskog, C. et al. The human cardiac and skeletal muscle proteomes defined by transcriptomics and antibody-based profiling. BMC Genomics 16, 475 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  144. Kanemaru, K. et al. Spatially resolved multiomics of human cardiac niches. Nature 619, 801–810 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Pieske, B. et al. How to diagnose heart failure with preserved ejection fraction: the HFA-PEFF diagnostic algorithm: a consensus recommendation from the Heart Failure Association (HFA) of the European Society of Cardiology (ESC). Eur. Heart J. 40, 3297–3317 (2019).

    Article  PubMed  Google Scholar 

  146. Popovic, D. et al. Ventricular stiffening and chamber contracture in heart failure with higher ejection fraction. Eur. J. Heart Fail. 25, 657–668 (2023).

    Article  PubMed  Google Scholar 

  147. Pietzner, M. et al. Mapping the proteo-genomic convergence of human diseases. Science 374, eabj1541 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  148. Rasooly, D. et al. Genome-wide association analysis and Mendelian randomization proteomics identify drug targets for heart failure. Nat. Commun. 14, 3826 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Shah, S. J., Butler, J., Shah, S. H., Kamphaus, T. N. & Sachdev, V. Accelerating therapeutic discoveries for heart failure: a new public-private partnership. Nat. Rev. Drug. Discov. 21, 781–782 (2022).

    Article  CAS  PubMed  Google Scholar 

  150. Levac, D., Colquhoun, H. & O’Brien, K. K. Scoping studies: advancing the methodology. Implement. Sci. 5, 69 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  151. Munn, Z. et al. Systematic review or scoping review? Guidance for authors when choosing between a systematic or scoping review approach. BMC Med. Res. Methodol. 18, 143 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  152. Peters, M. D. et al. Guidance for conducting systematic scoping reviews. Int. J. Evid. Based Healthc. 13, 141–146 (2015).

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

A.U.F. and K.E.K. are supported by T32 HL007111. B.A.B. is supported by R01 HL128526, R01 HL162828, U01 HL160226 and W81XWH2210245 from the US Department of Defense, and a grant from the Accelerating Medicines Partnership for Heart Failure through the Foundation for the National Institutes of Health (FNIH). S.D. is supported by HL162828 and U01HL160226. K.B.M. is supported by R01 HL149891 and a grant from the Accelerating Medicines Partnership for Heart Failure through the FNIH. Y.W. is supported by HL 148339, DK 117910 and a grant from the Cardiovascular Department, Mayo Clinic, Rochester, MN. M.M.R. is supported by HL162828, U01 HL160226 and a grant from the Accelerating Medicines Partnership for Heart Failure through the FNIH.

Author information

Authors and Affiliations

Authors

Contributions

A.U.F., M.E., L.J.P., K.E.K. and M.M.R. researched data for the article. A.U.F. and M.M.R. contributed substantially to discussion of the content and wrote the manuscript. All authors reviewed or edited the manuscript before submission.

Corresponding author

Correspondence to Margaret M. Redfield.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Cardiology thanks Michele Senni, Walter J. Paulus and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Review criteria

The review strategy to identify all studies of human myocardial tissue in heart failure with preserved ejection fraction (HFpEF) was performed in accordance with the systematic scoping review guidelines150,151,152. Databases, including Ovid MEDLINER, Ovid EMBASE, Scopus and Web of Science, were searched in English from their inception until 17 August 2022. An experienced librarian (L.J.P.), with input from the rest of the authors, designed and executed the search strategy using controlled vocabulary and keywords for human tissue and HFpEF or diastolic heart failure or dysfunction. Inclusion criteria included: (1) original investigation, (2) study of human cardiac tissue solely or for validation of findings observed in animal models, and (3) tissue obtained from patients with clinical diagnosis of HFpEF or rigorously documented diastolic dysfunction. Use of human cardiac tissue as non-HFpEF comparator was recorded but not required for inclusion. Studies that relied solely on imaging or other non-tissue collection procedures to characterize myocardial properties were excluded. Two investigators (A.U.F. and M.E.) reviewed titles, abstracts and figures from the search results and excluded articles clearly not meeting the predefined eligibility criteria. Three investigators (A.U.F., M.E. and M.M.R.) independently reviewed the remaining studies in detail and excluded those that did not meet the selection criteria or that were restricted to specific heart failure aetiologies (infiltrative or hypertrophic cardiomyopathy). Abstracted data included study type (human-only versus animal model plus human tissue), heart failure diagnostic criteria, ejection fraction criteria for HFpEF diagnosis, and comparator groups (heart failure with reduced ejection fraction (HFrEF) or comparators without heart failure (non-failing comparators)). Within HFpEF, other comparators were noted (Supplementary Box 1). Additionally, group sizes, age, whether both sexes were included, type of tissue (myocardium versus adipose), biopsy site and biopsy acquisition method were recorded. When human tissue studies were performed as part of an animal model-based study, only findings pertinent to the human tissue studies were presented. A total of 6,465 articles were identified from the database search and 14 from other sources (such as authors’ previous knowledge or included in the reference list of identified articles) and 4,083 duplicates were removed (Supplementary Fig. 1a). After title, abstract and figure review, 2,254 articles not meeting the inclusion criteria were excluded. After full-text assessment, another 86 studies did not meet inclusion criteria. Ultimately, 56 studies qualified for inclusion20,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,66,73,78,79,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128, which included 11 (refs. 37,38,42,45,52,55,58,61,64,66,114) identified in cited references or by investigator pre-existing knowledge, and three47,115,124 that were published subsequent to the literature search end-date. The included studies were from 2004 to 2023 (Supplementary Fig. 1b), with 28 (50%) studies published since 2018. Most studies were published in high-impact journals (Supplementary Fig. 1c). Some relevant studies might have been missed by our search and review strategies, and new studies might have emerged during the review and publication process. Our summaries were brief and focused on mechanistic insights and did not detail the strengths and weaknesses of each study.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fayyaz, A.U., Eltony, M., Prokop, L.J. et al. Pathophysiological insights into HFpEF from studies of human cardiac tissue. Nat Rev Cardiol (2024). https://doi.org/10.1038/s41569-024-01067-1

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41569-024-01067-1

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing